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Abstract—A distributed, hierarchical, market based approach
is introduced to solve the economic dispatch problem. The
approach requires only a minimal amount of information to
be shared between a central market operator and the end-
users. Price signals from the market operator are sent down
to end-user device agents, which in turn respond with power
schedules. Intermediate congestion agents make sure that local
power constraints are satisfied and any potential congestion is
avoided by adding local pricing differences. Our results show that
in 20% of the evaluated scenarios the solutions are identical to
the global optimum when perfect knowledge is available. In the
other 80% the results are not significantly worse, while providing
a higher level of scalability and increasing the consumer’s privacy.

Index Terms—Smart Grid, Multi-Agent Systems, Market, Self-
Organization

I. INTRODUCTION

Three trends set a challenge for future power grids. Firstly,

the transition towards sustainable energy sources leads to more

renewable energy, but also to a larger fraction of unpredictable

and intermittent production. Secondly, the electrification of

various systems such as transport (electric vehicles), heat-

ing (heat pumps), and in general an increase of electricity-

consuming devices leads to a huge growth of power consump-

tion. And thirdly, the distribution of energy generation leads to

a very different pattern in the load of the power transmission

grid, than it was designed for.

The control of a vast number of small power units, both con-

suming and producing, is extremely difficult to do completely

top-down, so a centralized control strategy cannot be used [1].

At the same time the power infrastructure is aging, and was

not built for the emerging pattern of distributed prosumers [2].

This is why we need self-organizing control algorithms to

schedule the use of electric devices while taking into account

constraints of the power distribution infrastructure. This aids

distribution system operators (DSO) and transport system

operators (TSO) to maintain power balance and make sure

there is no congestion, i.e. the grid capacity is not overloaded.

II. PROBLEM STATEMENT

The problem at hand is a variation of the economic power

dispatch problem [3], [4], where the operation of a set

of generators is optimized, such that power is provided to

consumers in the most cost-effective manner. Traditionally

this problem would include controllable generators (power

generation plants), constraining transmission resources (trans-

formers, stations, cables), and end-consumers having a static

load. Currently, with distributed energy resources, and demand

response—the possibility to control the load of consumers

using flexibility of smart devices—the problem changes sig-

nificantly.

A formal definition of the problem is as follows:

min
x

∑

i∈N

Ji(xi), (1a)

s.t.
∑

i∈N

xi = Θ, (1b)

Ax ≤ b, (1c)

xmin
i ≤ xi ≤ xmax

i , ∀i ∈ N , (1d)

Ci(xi) = 0, ∀i ∈ N . (1e)

With all parameters defined in Table I, the objective function

as defined in (1) is the same as for the traditional economic

dispatch, which can be summarized as: to find a set of

electrical powers xi for every device i ∈ N in the grid, that

minimizes the sum of all costs Ji(xi). In the original dispatch

problem defined, N defines only the producers. However, in

our problem formulation (1) N denotes the full set of devices

in the grid, including producers and consumers. This means

that contrarily to the traditional economic dispatch problem,

not only the generators are controllable, but also the flexible

loads of end consumers.

Note that the costs in (1a) do not necessarily refer to the

financial cost of a dispatch. Rather, this generic model only

optimizes some social welfare, which defines a desirable out-

come for all participants involved. Depending on the situation

at hand, one could minimize the amount of greenhouse gasses

emitted, or maximize the amount of renewable energy used.

However, for the rest of this paper the costs are defined as

the energy losses of the devices. By minimizing the amount

of energy losses we attempt to find a dispatch that is both

economic and sustainable.

http://arxiv.org/abs/2009.02166v1
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TABLE I
USED NOTATIONS AND PARAMETERS IN THIS PAPER.

Symbol Description Typical value Unit

A topology matrix of child relations
α forecast accuracy 0.9
b vector of congestion thresholds [2, 3, . . . , 3.5]× 104 W

βi congestion threshold of i 3× 104 W
Ci constraint function of i
CZ
i constraint function of i of type Z∗

γi PV operation cost of i 0.2
ei 1× T vector of energy of i [0.0, 1.1, . . . ,−0.3]× 103 Wh
eit energy of i at t 200 Wh

emin
i minimum energy of i 0.0 Wh

emax
i

maximum energy of i 2× 103 Wh
ǫ 1× T vector of errors [0, 11, . . . ,−225] W

ǫmax upper bound on the error 10−3 W
ηi storage efficiency of i 0.9
Θ target power of the cluster [1.9,−1, . . . , 2.6]× 104 W
i an agent index 0, 1, . . . , n
Ji cost function of i
JZ
i cost of i of type Z∗

λi storage leakage of i 360 W
Mi set of children of i
N set of all agents
ρ 1× T vector of prices [0.5, 0.3, . . . , 0.8]
T time horizon 24
t time slot index 0, 1, . . . , T
τ duration of a time slot 1 h

xi 1× T vector of scheduled powers of i [1.1,−0.5, . . . , 0.4]× 103 W

x̄ 1×T vector of aggregated powers of child nodes [24.0,−18.6, . . . , 8.7]× 103 W

x
′
i 1× T vector of expected powers of i [1.0,−0.4, . . . , 0.8]× 103 W

x̂ 1× T vector of average historic powers [0.8, 0.6, . . . ,−0.5]× 103 W

xit scheduled power of i at t −1.7× 103 W

xmin
i

minimum power for i −2× 103 W

xmax
i

maximum power for i 4× 103 W
ψi heat pump coefficient of performance (COP) of i 4.0

Note that powers are indicated from the grid perspective. That means positive powers indicate power going from the grid to the device, and negative powers
are from the device back to the grid.
∗Z indicates a type of agent, which can either be MO for market operator, CO for congestion, LOAD for a static load agent, PV for an agent with photovoltaic
solar panels, or ST for a storage agent.

Let us discuss the constraints of (1), i.e. (1b–1e). The

constraint (1b) states that the sum of all powers in the system

has to meet a specific target Θ. In a balanced (island) grid this

target has to be zero for every time slot, but in a connected

grid this target is the contracted load with the transmission

operator. Put differently, Θ is the net power input of the grid

to the rest of the world.

Constraint (1c) defines the limitations of the physical power

grid; a topology matrix A specifies which device is connected

to which grid components, and b is the rating of those

components—the maximum amount of power that it can safely

transmit.

Constraints (1d) and (1e) represent the constraints of the

devices in the grid. Specifically, constraint (1d) states that

a device cannot produce or consume more power than it

physically can, which is represented by lower and upper

bound, xmin
i and xmax

i , respectively. However, (1e) also takes

into account another private constraint C. We refer to this

constraint as private, as it only concerns the state of a single

device, and its state may concern information that we should

not require to share with other parties. E.g. an end-user should

not need to share its intent to run his or her washing machine

with the rest of the neighborhood. This constraint differs per

device, and specifies device limitations such as a battery that

cannot hold more than a certain amount of energy, and cannot

discharge when already empty. Flexible loads also may have

constraints considering the time at which they can turn on or

off based on the consumer’s settings. We will elaborate on

these constraints, as well as the cost functions of the device

agents in Section III-B.

A. Related Work

In existing studies, different strategies are used for energy

management. Four different main categories are defined in [1]

based on whether there is a distributed aspect of decision-

making and whether there is one- or two-way communication.

One of the strategies defined in [1] uses Transactive Con-

trol, where distributed systems decide locally on their device

management, using two-way communication in a market-

based control scheme. The authors compare this approach with

traditional top-down switching, price-reaction and centralized

optimization strategies and show that transactive control is

capable of using the full flexibility potential of the smart grid

devices, while maintaining the end-user privacy. This claim

is consistent with earlier studies [5], [6] that have shown

that using a market-based control in a multi-agent system
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can provide equally optimal results as a centrally optimized

system, under certain conditions.

Multi-agent based methods are already getting attention in

the smart grid domain due to many desirable properties: ro-

bustness, user-friendliness, attack resistance and scalability [7],

[8]. The economic dispatch problem is very well suited to be

represented using multi-agent systems [9]. There are many

studies that use a multi-agent based approach to model and

solve the problem, such as the two-way message passing

agents using consensus algorithms to find an allocation that

is optimal [10]. Other methods use a completely decentral-

ized method involving reinforcement [11], utility maximiza-

tion [12] or model predictive control [13].

In [14], a strategy is proposed to schedule the power

consumption and production of generators and loads based

on a method called Negotiated Predictive Dispatch. In this ap-

proach wind and conventional generators, as well as static and

flexible loads, are controlled on the transmission level. Agents

propose power schedules, which are aggregated by a central

market operator, which then updates a price program using

gradient descent, meaning the price of congested timeslots

increase, and that of underused time slots decrease. In doing so

the authors show that they are able to balance power produc-

tion and consumption, while satisfying power grid constraints.

However, this approach focuses on the transmission level,

whereas we consider the distribution level power grid to be at

a much more imminent risk of congestion. At the transmission

level, the scale is much larger than at the distribution level,

both geographically and considering the power levels involved.

Moreover, the power grid has a very different topology at the

transmission level. A major drawback of this approach when

applied at the distribution level, is that using a global power

price for congestion mitigation is not only unfair for agents

in non-congested areas, but it would also be converging to a

solution much too slowly. A similar approach to the negotiated

dispatch is provided by [15] in which a gradient descent on

the pricing is used, followed by a local optimization of agents.

Another approach is given by [16], in which power pro-

grams are proposed by device agents that are able to satisfy

cluster constraints to reach a target energy consumption, while

also staying within the limits of the grid. In their approach,

called Profile Steering, agents are only motivated to accom-

plish the cluster goal, which is to consume or produce energy

at a specific target amount, and will propose alternative power

programs whenever constraints are violated. Proposals that

reduce the constraint violations the most, are then selected

as the new candidate programs. In our view, the problem of

this approach lies in the lack of motivation for the participant

to sacrifice private rewards for running an alternative program.

The only objective is the cluster goal, which means that the

price of having limited resources is paid by a select set of

individuals that offer the most flexibility, or conversely, the

profit is reaped by those who are able to maximally make use

of remaining capacity.

The authors of [17] propose an approach based on DCOPs

(Distributed Constraint Optimization Problem) to solve the

economic dispatch problem, as well as the real-time demand-

response balancing problem. Their algorithm is able to find

optimal solutions for a system of controllable generators and

(predicted) loads, taking into account transmission network

constraints. They show that finding the optimal solution using

Dynamic DCOPs is possible, but their solution does not scale

very well. A relaxed version of the problem, in which soft

constraints may be (temporarily) violated, scales better, but

still for relatively small time horizons, even considering their

implemented solution on a GPU.

We note that related work on the topic of this chapter

listed here is not exhaustive. For further detailed background,

a comprehensive overview of different mechanisms for solv-

ing optimization problems in smart grids, particularly where

demand response is involved, we refer to [18], [19], [20].

III. SELF-ORGANIZING ECONOMIC DISPATCH

Our contribution is a self-organizing method for coordi-

nating the power scheduling of smart grid devices on the

distribution level energy grid. This is a multi-agent based

heuristic approach for find a solution to the economic dispatch

problem as defined in (1). This multi-agent based approach

allows for great scalability, while ensuring privacy and final

control of the end-user.

At the distribution grid level, devices are typically consumer

devices, such as PV-panels, household batteries, heat pumps,

ventilation or air-conditioning units. The controllability, or

flexibility of such devices is often limited, and bound by the

device limitations and the user preferences. With increasing

numbers of such devices, using a strictly “top-down” approach

is intractable, since the search space grows exponentially with

each added device. For this reason we use a hierarchical

approach, in which the market operator delegates its task to

intermediate “congestion” agents which then independently

solve subproblems—which is to make sure that the total

power throughput at their allocated point does not exceed a

certain threshold. Making such subdivisions is justified, since

in the power grid, transformers are effectively branches of

the topology, and two nodes under different transformers are

independent of one another; hence, transformers are the logical

point to place congestion agents in the control hierarchy.

Our approach, denoted as Local Pricing Receding Horizon

(LP-RH) is based on the economic incentive that end-user

devices should have, to provide its owner with a service, in

the most affordable way. Put differently, the system will use

price differences to stimulate agents to schedule their power

consumption or production in a balanced way, such that any

grid constraints are satisfied. The overall scheme is simply to

gather expected power programs from the connected devices,

and then iteratively adjust energy prices to steer the agents

into a certain power program. The method is explained in more

detail in the following section, and is similar to the Negotiated

Price Dispatch proposed by [14].

A. Local Pricing Receding Horizon

In order to create a power planning taking into account

forecasts and/or predicted power programs of clients, we use

a Receding Horizon (RH) approach, depicted in Fig. 1 which

means that at any point we only take a fixed horizon of T
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t1 t2 t3 . . . tT−2 tT−1 tT

t2 t3 t4 . . . tT−1 tT tT+1

t3 t4 t5 . . . tT tT+1 tT+2

Fig. 1. The principle of a receding horizon market is that every time step
the time horizon for optimization shifts by one. Planned power programs
(white) are turned into fixed contracts for the current time step (green), which
determines the outcome of the algorithm. This figure is redrawn from [14].

Algorithm 1 LP-RH Algorithm

xi = createPowerprogram(i, ρ)
1: if i is a Device agent then

2: xi = arg min
x
Ci(x, ρ) {Run local optimization}

3: else

4: repeat

5: for all j ∈ Mi do

6: xj = createPowerprogram(j, ρ)
7: end for

8: xi =
∑

j∈Mi
xj

9: ǫ = Ci(xi)
10: ρ = adjustPrices(ǫ, ρ) {Using gradient descent}
11: until ǫ ≤ ǫmax

12: end if

13: return xi

program time units (PTU) into account. A PTU is typically 15

minutes or one hour, throughout this paper we will use PTU

length of one hour so T = 24. However, none of the mentioned

approaches are limited to this convention. When the algorithm

has converged and a power program is found for the next T
PTUs that satisfies all constraints, the first PTU becomes the

“current” situation, and the projected power program becomes

a contract. The time horizon now shifts by one, and the entire

system starts again.

The Local Pricing Receding Horizon algorithm is shown

as pseudocode in Algorithm 1; an example graph on which

the algorithm could run is shown in Fig. 2. The algorithm de-

scribes how any agent finds a new power program xi to satisfy

its local constraint Ci. Every device agent in the grid does this

by solving a local optimization problem (line 2), taking into

account local constraints as explained in Section III-B.

Prices ρ are updated by the market operator agent and

M

C1 C2

D1 D2 D3 D4 D5

Fig. 2. Simple example topology of a graph which could be running the
LP-RH algorithm. One market operator (M ) is connected to two congestion
agents (Ci), which are connected to a total of five device agents (Di). The
device agents can represent PV panels, consumer loads, storage agents, or
any other leaf nodes in the power grid. Topologies where congestion agents
are connected to more congestion agents are also possible.

the congestion agents in order to get a power program x

satisfying the grid constraints. When the market operator or

any congestion agent runs the LP-RH algorithm, all j ∈ Mi,

where Mi are the immediate children of agent i, are requested

to propose a power program based on the price ρ (line 6). Here

the function is called recursively until all agents have deter-

mined a new power program. Note, that if any of the children

are congestion agents, they determine their power program

by forwarding the prices to their children and returning the

sum of all received programs. Many agents will not know

exactly how they will function in the future, as contexts might

change, a user might behave differently than anticipated, or

weather conditions may act up; this is why receding horizon

method updates the time iteratively. With the sum of all power

programs, the market operator can determine the error ǫ, which

is the sum of all local constraint violations C for every t ∈ T .

In line 9 the constraint Ci is used to compute the local

constraint violation and stored as an error variable ǫ. The value

of ǫ is taken into account to adjust the prices in line 10. In the

“adjustPrices” function, a gradient descent approach is used,

which linearly interpolates the last two errors as a function

of the price. We then choose the price at which the error is

projected to reach zero. Note that this means we assume the

reaction of the devices linearly depends on the prices, which

will only hold under very specific circumstances. To overcome

this issue, we iteratively repeat the process until ǫ ≤ ǫmax

and assume that a non-linear response can be described as a

series of linear pieces. The parameter ǫmax then represents an

upper bound on the error, which we can use as a convergence

criterion.

B. Agent Behavior

Agents in the system are characterized by the device that

they have to assign a power program for. In the distributed

case, every agent locally optimizes a local cost function Ji,
which is part of the global optimization problem (1). Also,

local constraints Ci have to be taken into account which are

represented by constraint (1e). The behavior of the agents can

be defined by three functions for the costs, the local constraint

and the power program; an overview of this is shown in

Table II. In our model we consider the following types of

agents:

1) Market Operator: This is the root node of the tree (M
in Fig. 4), as far as the local distribution grid concerns. In the

physical grid, it corresponds to the transformer that connects

the local low voltage (LV) grid to the medium voltage (MV)

grid. We assume that there is no energy loss at the market

operator, so

JMO = 0. (2)

Its goal is to find a solution to (1), and its private cost would be

the same as the target constraint in (1b). The market operator

runs Algorithm 1, using a deviation of the target profile Θ as

an error, which is minimized by the algorithm. Hence, its local

constraint is defined as

CMO = x̄− Θ, (3)
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TABLE II
A SUMMARY SHOWING THE THREE FUNCTIONS SPECIFYING THE BEHAVIORS OF THE AGENTS.

Agent type Cost Constraint Power

Market Operator JMO = 0 CMO = x̄−Θ x̄ =
∑

i∈N xi

Congestion agent JCO
i

= 0 CCO = x̄i − βi iff |x̄i| < βi x̄i =
∑

j∈Mi
xj

Load agent JLOAD
i

= 0 CLOAD
i

= 0 xi

PV agent JPV
i

= xi − x
′
i CPV

i
= 0 iff τxiρ ≥ γi xi = x

′
i or 0

Storage agent JST
i

= xi(1 − η′i) CST
i

= 0 iff emin
i < ei < emax

i
xi = f(ρ)

where x̄ denotes the power program of the market operator.

Since the market operator is not a device in the grid itself, its

power is the sum of the powers of its children, which in case

of the market operator are all nodes in the cluster:

x̄ =
∑

i∈N

xi. (4)

The value of (3) can either be negative or positive, which

respectively means either the total power production or the

total consumption is too high. The market operator sets an

initial price of ρ = 0.5 for all timeslots, and then uses

Algorithm 1 to minimize the constraint value until it reaches

zero, in order to satisfy the global constraint (1b).

2) Congestion Agent: This is an intermediate node on the

grid tree (C in Fig. 4) connected to a parent node who is

either the market operator or another congestion agent. It

corresponds to a component in the grid where congestion

might potentially occur, such as a transformer. Equivalently

to the market operator, we assume that no energy is lost here,

so:

JCO
i = 0. (5)

This agent has a constraint that aims to limit the power

usage of that part of the grid, this corresponds to the con-

straint (1c). The congestion agent also uses Algorithm 1 to

minimize the error of its local constraint, which is defined as

CCO
i =

{

x̄i − βi, if |x̄i| ≥ βi,

0, otherwise.
(6)

Here βi is the power limit of the agent i, which means

it is the maximum power throughput of the grid at the

point i represents. Again x̄i denotes the power profile of the

congestion agent, but is now equal to the sum of all devices

under the current node:

x̄i =
∑

j∈Mi

xj , (7)

Similar to the constraint of the market operator in (3) the

constraint value can become negative or positive, and is used

to compute the error ǫ in Algorithm 1.

3) Load Agent: This is an agent responsible for an uncon-

trollable load in the grid (represented by any device agent D
in Fig. 4). This could be a consumer household, an office,

street lighting, or any other non-flexible load, and thus only

participates in the problem as part of constraint (1b). In the

distributed system however, it is responsible for making a

forecast of the power usage, and this forecast will be updated

with more accurate information as the time horizon shifts.

The load agent has no attached cost in the global problem,

and no need to locally compute any optimal behavior. This is

equivalent to stating that its cost and constraint correspond to

JLOAD
i = 0, (8)

CLOAD
i = 0. (9)

Its corresponding load profile xi is fixed to some profile that

constrains the global problem (1). In our experiments its values

are taken from real households as described in Section IV-B.

4) PV Agent: The PV agent (any D in Fig. 4) has some

flexibility to offer to the optimization function by allowing

curtailment in reference to the expected generation. We assume

that curtailment is binary, in that either the PV generates power

as normal, or it is switched off and produces no power at all.

Curtailing means that there is potential energy lost, and hence

the cost function of a PV agent is defined as

JPV
i = xi − x

′
i, (10)

where x
′
i indicates the expected power, when not curtailing.

This expected power is taken from the scenario, which will be

detailed in the Section IV.

When reacting to prices in the distributed system, a decision

is made in order to decide whether to curtail based on the price

profile. If the operational running costs γi of the PV is more

than the power that would be generated by it, there is no point

in running the generator (from an economic point of view).

Hence, the local constraint and its corresponding decision rule

of a PV agent can be written as

CPV
i =

{

1 if τxiρ < γi,

0 otherwise,
(11)

xi =

{

0 if τx′
iρ < γi,

x
′
i otherwise.

(12)

For the PV agent it also holds that the corresponding expected

power profile x
′
i determines the global problem (1). Its values

in our experiments are taken from real PV panels as described

in Section IV-B.

5) Storage Agent: A storage agent (again a leaf node D in

Fig. 4) provides flexibility by allowing to store some energy in

a local storage like a battery or a heat buffer. There are limits

to the amount of energy that can be stored, either because

of the physical limitations of the storage device, or because

of the end-user settings. Moreover, a storage agent has some

efficiency, which defines energy loss when energy is put into

it, or out from it. This means that we can define the cost
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function of the storage agent as the energy lost during charging

or discharging

JST
i = xi(1− η′i), (13)

where

η′i =

{

ηi if xi ≥ 0,

η−1

i otherwise.
(14)

This difference makes sure that the loss is correlated to the

internal power of the battery when charging or discharging.

I.e. xi defines the power at the grid side of the storage, when

charging a lower power effectively charges the battery, and

conversely when discharging a higher power is required to

provide some power level to the grid.

In order to define the constraints of the storage agent we

must define the update function for the amount of energy ei

stored as the cumulative sum of the powers

eit = ei0 + τ
t′=t
∑

t′=t0

η′ixit′ − λi. (15)

Here λi represents the leakage or self-discharge rate of the

storage agent i, and ei0 is the stored energy at the start of the

experiment. Let us now define the following constraints on the

storage agent

CST
i =

{

0, if emin
i < ei < emax

i ,

1, otherwise.
(16)

The minimum and maximum energy values are defined by emin
i

and emax
i , respectively.

For a storage device, the power limits denote the maximum

charge and discharge rates. They are defined by xmax
i and xmin

i ,

respectively, in (1d). A special case of a storage device is

a heat pump, which (electrically powered) heats a house in

order to keep the temperature within comfortable levels. The

heat pump only allows charging and only discharges through

leakage, hence for a heat pump xmin
i = 0 and λi > 0.

When a storage agent has to update its expected power

profile in line 2 of Algorithm 1, some response function (f(ρ)
in Table II) is required, which is “economically sane” and has

the following characteristics:

• return xmax
i for low prices and xmin

i for high prices,

• be a monotonically decreasing for increasing prices,

• have a “plateau” of zero power response for some inter-

mediate price (ρ = 0.5), which is wider for less efficient

devices.

The final characteristic allows more efficient devices to

respond to subtle price change, and have less efficient devices

respond to more extreme prices. This way devices with a

higher efficiency are used first when flexibility is needed,

and (when parameterized correctly) less efficient devices will

only be used when required. In our implementation we chose

the simplest response, where the agent linearly decreases its

power from xmax
i to zero at ρ = ηi/2. It then stays at zero

symmetrically around ρ = 0.5 until ρ = 0.5/ηi, and then

decreases its power response linearly to xmin
i . This power/price

relation is depicted in Fig. 3.

0 0.2 0.4 0.6 0.8 1

−100

0

100

200

Price (steering signal)

P
o
w

er
(W

)

Fig. 3. The strategy of the storage agent with xmax
i

= 200W, xmin
i = −100W

and ηi = 0.9 shows the power response for an increasing price. The plateau

at 0W extends from ρ = ηi/2 to ρ = 0.5/ηi.

An alternative strategy for the storage agent would be to

make use out of any differences in the price, charging and

discharging as soon as the price differences are large enough to

overcome its efficiency. From a strictly economic perspective,

this is the optimal strategy to maximize its own benefit.

However, this leads to very “binary” behavior with minimal

and maximal charging rates [12] and thus, little room for

optimizing from the market operator and congestion agent.

Therefore, a linear strategy is implemented as depicted in

Fig. 3, allowing to solve the overall optimization problem (1).

IV. EXPERIMENT SETUP

The LP-RH algorithm was empirically evaluated by running

a simulation of an LV grid with a set of realistic household

load profiles and PV production profiles for a series of 24

PTUs.

A. Distribution Network Topology

For the topology of the network we use the European Low

Voltage Test Feeder [21] network. This dataset is used to

benchmark power and energy algorithms on realistic European

distribution networks. In this paper we superimposed six

points on the topology, where we monitor and mitigate any

potential congestion. These points are strategically chosen

to separate the problem into independent subproblems. The

resulting topology with the congestion points are shown in

Fig. 4.

B. Household Load and PV Profiles

The household consumption and production profiles are

taken from a pilot study [22], in which 92 residential con-

sumers were monitored over the course of a year (from March

through November 2018). The data was preprocessed such

that we have separated information on the consumption of

houses, and of the PV installations. Data is anonymized and

randomized per month, so that we can select data from any

specific month for a base load of a household, or a residential

PV installation.

In the experiment the 54 households from Fig. 4 were

assigned a random instance of the load and PV profiles from

the same month (i.e. all households were equipped with PV

panels). The daily load consumption varied between 4.98 kWh

and 29.39 kWh, and the total PV production varied between

826 Wh and 18.8 kWh. Furthermore, 16 randomly selected
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Market operator
Congestion agent
Household

Fig. 4. The topology of the IEEE LV feeder network used for the simulation.
The figure depicts the connections between household consumers, the inter-
mediate congestion agents, and the root market operator. The “filled” markers
represent the agents from Section VI.

households were assigned a household battery, and again 16

were chosen to have a heat pump installation.

Every household and PV installation in the simulation

would select a random profile from the dataset, which was

used as its power profile. The objective Θ was set to a total

net consumption of the LV grid using the mean total power

consumption of the houses including PV production. Choosing

the target profile Θ in this way corresponds to a situation

in which the energy provider of the simulated neighborhood

would agree to a contract for the average behavior of the

households, and subsequently attempts to use flexibility to

account for any deviations from the normal.

The batteries were all dimensioned with storage capacities

of emax = 10.8 kWh, and maximum charge and discharge rates

of xmax = 4000W and xmin = −4000W, respectively. The

batteries charging efficiencies were all set at η = 0.9. The heat

pumps were estimated to have a working energy capacity of

emax = 2 kWh, this means the difference between the thermal

energy capacity of the house at the minimum and maximum

comfortable user temperature is 2ψ kWh, where ψ = 4.0 is the

coefficient of performance of the heat pump. Then, the heat

pumps have a xmax = 1600W and xmin = 0W, an efficiency

of η = 1 and a constant leakage rate of λ = 360W. Finally, to

ensure convergence, the maximal error value is set to ǫmax =
10−3 in the experiments for this paper

C. Forecast Uncertainty

The predicted load and production power profiles x̂ of the

load and PV agents were generated by taking average profiles

of the complete dataset. These average profiles are considered

as taken from historic data and hence, provide a ground for

predicting the power program of future PTUs. When agent i
determines its power prediction x

′
i, it will compute a weighted

average between its assigned power profile xi and the average

profile x̂, such that:

xit = (1− α)x′
it + αx̂t, (17)

α =

√

t− 1

T − 1
, (18)

such that at t = 1 the prediction equals the selected profile

x
′
it. At t = T , the prediction is simply the average power x̂t.

V. CENTRALIZED SOLVER

In order to address the performance of the LP-RH algorithm,

a centralized optimization approach is also introduced to

provide lower bounds to its results. A mixed integer linear

program (MILP) solver was used to find these bounds for the

problem stated in (1). The centralized optimization approach

considers the exact same scenario that was solved by the

decentralized algorithm; the energy loss is minimized and the

same set of constraints apply. A fundamental difference lies in

the availability of information. Whereas detailed information

is only shared locally in the LP-RH algorithm, the centralized

optimization approach assumes complete knowledge of the

current system state for the decision-maker; i.e., no limits are

imposed on the spacial flow of information within the network.

With these features in mind, two versions of the MILP were

formulated: Receding Horizon Centralized Solver and Perfect

Information Centralized Solver.

A. Receding Horizon Centralized Solver

The receding horizon centralized solver (RHCS) is the

most similar to the LP-RH algorithm. It uses a receding

horizon approach (as depicted in Fig. 1) to find an ideal

dispatch solving the consecutive sub-problems. Uncertainty

about future device states is again simulated by (17). Because

this solver has perfect information at the current state for each

iteration of the receding horizon, its solution represents a lower

bound on the solution found by the LP-RH algorithm.

B. Perfect Information Centralized Solver

In the perfect information centralized solver (PICS), a single

centralized optimization problem is solved for the complete

dispatch. In addition to perfect spacial information, this ver-

sion of the MILP also has perfect temporal information about

the complete system state; this means that no uncertainty

about future states is simulated. Referring back to (17), this is

equivalent to setting α = 1, which results in perfect predictions

for each profile. The solution of this MILP represents an

absolute lower bound for problem (1).

VI. RESULTS

In this section the results of the described experiments are

shown. Before comparing the performance of the different

solvers, which is done in Section VI-A, the behavior of the

LP-RH algorithm is shown in this section. The graphs in this

section show examples of single simulation runs, demonstrat-

ing the behavior of the different agent types. Powers are shown

as power consumption, this means a net consumption is shown

as positive power, and conversely negative powers indicates a
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Fig. 5. The power program of the market operator and the price profile as
the outcome of Algorithm 1, show the results of a 24-hour simulation of the
problem with the LV feeder network and 92 random households.

net power production. In Fig. 5 the final result of the market

operator is shown, where the market operator has found a price

profile such that the target profile is met exactly.

Fig. 6 shows the power profile of one of the three congestion

agents that is directly connected to the market operator. Its

power congestion limits are set such that in the peak moments

of the day there is some congestion expected. This results in

a price difference shown in the power program, as around the

peak PV production (t = 12, 13, 14) the local price is slightly

lower than the market price, leading to a lower net power

production. Similarly, at the end of the day (t = 19, 20, 21, 22)

a positive power congestion was mitigated by increasing the

price.

The power program of a heat pump agent is shown in

Fig. 7. This heat pump is connected directly to the congestion

agent from Fig. 6, hence its price profile should be identical.

What is most obvious in this graph is that the high price

at t = 12 leads to a zero power consumption, and quickly

after that, the power consumption rises in order to maintain

comfortable temperatures. Again, around t = 19, 20, 21 the

relatively high prices lead to a power consumption of zero,

which was apparently feasible because of the high power

consumption leading up to it.

Finally, Fig. 8 shows the total power programs of all

devices of the four classes in this experiment summed up.

In this figure, the power profiles of the loads and the PVs

are the direct result of the chosen profiles, and are the input

for problem (1). We can see that for the majority of the

experiment, all used flexibility is from the heat pumps with

the high efficiency. Only at times of the congestion will the

less efficient battery agents be used.

A. Comparison with Central Solvers

In a validation experiment 105 random problem instances

(15 permutations for seven months) were created, and solved

by the three different algorithms. In Fig. 9 the results are

shown for the feasible instances. A solution is considered
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Fig. 6. The power program of a congestion agent shows some periods of
congestion at the production and consumption bounds (red dashed lines), and
the corresponding changes in price profiles (from Algorithm 1) relative to the
global price of the market operator.
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Fig. 7. The power program of a heat pump agent shows the power being
mostly used at moments where the price is low, relieving the need to charge
when the price is high; or considering the view of the grid, when a lower
power consumption is required.

feasible if all three solvers were able to find a solution that

satisfies all constraints. The LP-RH algorithm did not find

a correct solution for 26 problem instances, 11 of which

were found to be overconstrained according to RHCS. For

the feasible instances the LP-RH algorithm found solutions

that were not significantly worse than the PICS, and in 21

instances found a solution with the exact same cost. In 27

instances LP-RH found a solution that was equally well as

the RHCS or even slightly better—this seems to contradict

the initial statement that RHCS acts as a lower bound for

LP-RH; however, this is due to the way both solvers deal

with uncertainty. The LP-RH algorithm allows the congestion

agents to violate power constraints for future PTUs, as long

as eventually they are not actually congested due to imperfect

forecasts according to (17). The RHCS algorithm does not al-

low power constraints to be violated at any point in the future,
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Fig. 8. The total power consumption per device type show that the batteries
are used far less than the heat pumps, since they have a lower efficiency. The
PV panels did not have to be curtailed in this run.
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Fig. 9. Compared with centralized optimization solvers, the LP-RH algorithm
performs equally well. In this box plot the median is shown as a line, the boxes
indicate the 25% and 75% percentiles, and the tails are capped at a maximum
length of the box width; outliers are drawn separately.

and hence might react too strict when a future congestion is

mistakenly predicted.

In the set of infeasible problems, i.e. problems that do not

have a valid solution satisfying all constraints, LP-RH does

find solutions that minimize the power loss. However, since

these solutions either temporarily overload congestion agents

(where xagen > βi), or does not match the target profile

Θ exactly, they are not a fair comparison, since they do not

strictly solve (1). In a separate run the problems were relaxed,

by increasing the power rating of the congestion agents. This

resulted in the LP-RH not being able to find a feasible solution

in only 14 problem instances, but the results were otherwise

very similar to the ones reported here in Fig. 9.

VII. CONCLUSIONS

We have introduced an algorithm for self-organizing smart

grids, by solving the economic dispatch problem using a

decentralized market based approach with local pricing. The

LP-RH algorithm using a hierarchical approach was shown

to be able to solve the problem using a fairly simple in-

teraction scheme in which pricing information is sent down

the hierarchy tree, and planned or forecasted power programs

are sent back up. Using a gradient descent approach, the

market operator is capable of tuning the pricing to find feasible

solutions to minimize the power losses in the grid.

In our experiments we found that in 20% of the problems

LP-RH did not perform any worse than a perfect-information

centralized solver. In the other 80% our algorithm did not

perform significantly worse. The benefit of LP-RH over a

centralized solver are in the robustness and scalability of

the solution, as well as in the preserved privacy of the end-

consumers.

In the implementation of the response of the storage agent,

we intentionally did not choose to respond with an optimal

power program given the price signal. Particularly, when a high

price is expected in the future, the agent will not “proactively”

charge to avoid having to charge later, or vice versa. This

behavior could be implemented at the agent quite easily using

a dynamic programming approach, but it would lead to very

extreme behavior, e.g. very binary behavior of charging or

not-charging at full capacity even for small price differences.

This binary behavior is hard to deal with in the rest of the

hierarchical tree, and does not lead to any problems per se,

but might be improved upon in a future continuation of this

work.

Other variations of the problem may include other device

types, for instance time-shiftable devices such as washing

machines or dishwashers. Also, using electric vehicles (EV)

as an additional type of agent, providing energy flexibility

is a very interesting extension, which will undoubtedly lead

to other complications because of their high power ratings.

Finally, an integration with a real time balancing algorithm

such as [23] would be very fruitful to complete the needs of

the future smart grid.
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[14] J. Warrington, S. Mariéthoz, and M. Morari, “Negotiated predictive
dispatch: Receding horizon nodal electricity pricing for wind integra-
tion,”in International Conference on the European Energy Market. IEEE,
May 25–27 2011, pp. 407–412.

[15] G. Binetti, A. Davoudi, F. L. Lewis, D. Naso, and B. Turchiano, “Dis-
tributed consensus-based economic dispatch with transmission losses,”
IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1711–1720, 2014.

[16] T. van der Klauw, M. E. T. Gerards, G. Hoogsteen, G. J. M. Smit,
and J. L. Hurink, “Considering grid limitations in profile steering,” in
International Energy Conference. IEEE, Apr. 4–8 2016, pp. 1–6.

[17] F. Fioretto, W. Yeoh, E. Pontelli, Y. Ma, and S. Ranade, “A distributed
constraint optimization (DCOP) approach to the economic dispatch with
demand response,” in Proc. AAMAS, São Paulo, Brazil, May 8–12 2017,
pp. 999–1007.

[18] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand
response programs in smart grids: Pricing methods and optimization
algorithms,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 152–178,
2014.

[19] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in
research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925,
2015.

[20] A. R. Jordehi, “Optimisation of demand response in electric power
systems, a review,” Renewable and Sustainable Energy Reviews, vol.
103, pp. 308–319, 2019.

[21] IEEE, “European low voltage test feeder network (v2),” Available online:
http://sites.ieee.org/pes-testfeeders/files/2017/08/European LV Test Feeder v2.zip,
2015, accessed: Nov. 08, 2018.

[22] A. Rassa, C. van Leeuwen, R. Spaans, and K. Kok, “Developing local
energy markets: a holistic system approach,” IEEE Power and Energy

Magazine, vol. 17, no. 5, pp. 59–70, 9 2019.
[23] K. Kok and A. Subramanian, “Fast locational marginal pricing for

congestion management in a distribution network with multiple ag-
gregators,” in International Conference and Exhibition on Electricity

Distribution, Madrid, Spain, Jun. 3–6 2019.

http://sites.ieee.org/pes-testfeeders/files/2017/08/European_LV_Test_Feeder_v2.zip

	I Introduction
	II Problem Statement
	II-A Related Work

	III Self-Organizing Economic Dispatch
	III-A Local Pricing Receding Horizon
	III-B Agent Behavior
	III-B1 Market Operator
	III-B2 Congestion Agent
	III-B3 Load Agent
	III-B4 PV Agent
	III-B5 Storage Agent


	IV Experiment Setup
	IV-A Distribution Network Topology
	IV-B Household Load and PV Profiles
	IV-C Forecast Uncertainty

	V Centralized Solver
	V-A Receding Horizon Centralized Solver
	V-B Perfect Information Centralized Solver

	VI Results
	VI-A Comparison with Central Solvers

	VII Conclusions
	References

