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Abstract—Wireless Power Transfer (WPT) technologies aim
at getting rid of cables used by consumer devices for energy
provision. As long distance WPT is becoming mature, the health
impact of WPT becomes increasingly important to consider. In
this paper we look at how to maximize the wireless power
transfer to remote devices, while maintaining a safe level of
electromagnetic radiation (EMR) for humans that are in the
vicinity of the energy transmitters. Classically, this problem can
be described as a centralized optimization problem of finding the
optimal set of safe power levels at locations of human presence.
Instead, we advocate to formulate this problem as an agent-
based Distributed Constraint Optimization Problem (DCOP).
As a solution to this problem we introduce CoCoA WPT, a
variant of the DCOP solver CoCoA. CoCoA WPT provides
a solution of similar quality to centralized solver even for a
large scale network involving over a thousand nodes. Based
on CoCoA WPT, we propose a self-adaptive charging system:
Transferring Energy Safely by Self-Adaptation (TESSA). TESSA
keeps the charging network safe even when it is perturbed by
environmental dynamics. We show that TESSA can reach on
average up to 85% of the theoretical optimal maximum total
transmitted power (calculated using centralized solution) while
satisfying the EMR safety constraints.

I. I NTRODUCTION

Today’s ecosystem of the Internet of Things (IoT) is
composed of millions of embedded devices that can mon-
itor and control the physical world [1]. These devices are
equipped with several hardware components such as sensors
(for sensing), actuators (for actuation), microcontrollers (for
computation) and transceivers (for communication), that still
consume considerable amount of power. Fortunately, the re-
search efforts on electronic circuits have already decreased the
power consumption of these hardware components to a few
microwatts [2]. This allowed the provision of power wirelessly
by means of harvesting the energy of radio frequency (RF)
waves [3], [4]. As the efficiency of harvesting circuits improve,
many devices are being powered wirelessly using only RF
energy without any external power source such as batteries,
e.g. WISP [5].

For sustainable/continuous operation, a wirelessly-powered
IoT system requires several dedicated RF energy transmitters
that can control their power level to charge nearby receivers
collaboratively, forming a Wireless Power Transfer Network
(WPTN) [6], [7], [8]. The deployment of this conceptual
network is an important issue for the provision of wireless
energy in an efficient way. Since the received power by a

receiver is inversely proportional with its squared distance
to a particular RF transmitter, finding an optimal strategy to
minimize the charging time of the whole set of receivers and
energy outage of the transmitters is not a trivial problem [9].

Electromagnetic Radiation Safety: The electromagnetic
radiation (EMR) at a particular point can be modeled as a
linear function of the received power [10, Sec. III-A], [11,
Table 1]. Since, several energy transmitters can be active
simultaneously to charge the nearby receivers, it might be the
case that the total EMR values at some particular points in
the charging area—which have a contribution from all active
transmitters—can exceed the limit defined by the RF expo-
sure regulations [12], [10]. Therefore, asafe-chargingWPTN
must ensure that it does not create harmful electromagnetic
radiation [13], as it is trying to minimize the charging timeby
increasing the power levels of the transmitters [12].

The Problem Statement: The maximization of thetotal
transmitted powerby finding individual transmission power
levels of the transmitters, while satisfying thesafety con-
straints are two orthogonal optimization objectives in a dy-
namic charging environment. New energy transmitters, as well
as receivers, can be introduced to the charging system. This
means that EMR values at some particular locations can
exceed the threshold if these new transmitters start provi-
sioning power. Moreover, it is difficult to model and estimate
exactly the received power, and in turn the EMR value, due
to the environmental dynamics of the RF wave propagation.
Therefore, a one-shot offline centralizedcharging algorithm
that provides the optimal solution to the aforementioned opti-
mization problem is not feasible.

Self-Adaptive and Safe Wireless Charging:Apparently,
self-adaptivityshall become a necessary property of a WPT
system such that the charging algorithm should transfer the
network into a safe state, when the safety constraints are
violated. Unfortunately, we are unaware of aself-adaptive
and safecharging algorithm in the current literature that (i)
allows energy transmitters to interact with the energy receivers
and sensors locally in a distributed fashion; (ii) does not use
a centralized entity to find sub-optimal power levels subject
to safety regulations; and that (iii) keeps the network safe
via simple interactions among the nodes even though it is
perturbed by environmental dynamics.

Contributions: In this paper we propose a method based



on Distributed Constraint Optimization (DCOP) solvers to find
near-optimal solutions for the optimization problems without
any centralized entity and by only using local interactions
among the nodes. Accordingly in this paper, we introduce
a new wireless charging system called TESSA (Transferring
Energy Safely by Self-Adaptation). TESSA is based on a
variation of the recently proposed DCOP solver CoCoA [14],
and is self-adaptive, in the sense that it runs an algorithm
on the transmitter nodes that will find an optimal transmission
power levels. This not only keeps a WPTN optimal in terms of
power transfer, but also safe with respect to EMR regulations.
Within this context, we provide the following contributions to
the state of the art:

1) We formulate a distributed constraint optimization prob-
lem where the energy transmitter devices maximize
the total transmitted power to the receiver devices, i.e.
minimize thecharging time, while keeping the network
safein the EMR sense using the measurements from the
locally deployed sensors;

2) A variation on the CoCoA algorithm is proposed, called
CoCoA WPT, which enables solving the distributed
optimization problem, while making sure the EMR
thresholds are never violated;

3) We present a novel self adaptive charging system,
TESSA, based on the CoCoAWPT solver. TESSA
transfers the charging network to a safe state, even
when perturbed by environmental dynamics such as new
energy transmitters joining in the network;

4) We compare the CoCoAWPT algorithm with the exist-
ing DCOP solvers via simulations. Our results show that
CoCoA WPT outperforms existing solvers by finding
a solution near the theoretical optimal, reaching on
average 85% of the maximum (optimal) solution, in
terms of power transmission;

5) Our charging system based on DCOP solvers maintains
safe EMR levels, even under reasonable levels of model
prediction error, which a centralized solution cannot.

II. RELATED WORK

We provide a brief overview of the related work on wireless
power transfer and distributed constraint optimization, which
our work builds upon.

A. Wireless Power Transfer

The number of IoT nodes continues to grow exponen-
tially [15], [16]. This exposes a problem of sustainable energy
provision to such a mass of (battery-powered) IoT devices.
Fortunately, the recent advancements in RF energy harvesting
and low-power electronics, e.g. [17], make it feasible to power
ultra low-power microcontroller-based IoT devices wirelessly
using electromagnetic energy [18]. Wireless power transfer re-
vealed several optimization problems that gained considerable
attention from the research community, e.g. the optimization
of the harvested power [19], energy outage [20] and charging
delay [9].

However, the electromagnetic safety issues provide addi-
tional constraints on the wirelessly supplied power. Specifi-
cally, since an EMR value that is above the limits of well-
defined regulations [21] is considered as a threat to human
health [22], it introduces an important constraint to the objec-
tive of aforementioned optimization problems.

To the best of our knowledge, there are only two recent
studies (from the same authors) that target the optimal wireless
power transfer incorporating the human health effects. A one-
shotcentralizedsolution that maximizes the total transmitted
power subject to the safety constraints at each point on a
pre-defined deployment area is presented in [10]—in [23],
the same problem is handled in adistributed fashion. Un-
fortunately, these two studies have a fundamental drawback:
they use deterministic models to estimate EMR. However, RF
propagation is non-deterministic and modeling errors might
lead to violate the safety constraints. Moreover, the distributed
algorithm in [23] is quite complex and composed of sev-
eral phases. The algorithm employs a distributed redundant
constraint reduction algorithm, splits the deployment area
into small squares and employs linear programming (LP) by
considering the local constraints inside each square. Therefore,
it cannot be considered as a self-organizing solution since
optimization is not performed by local interactions solely,
rather than using the global information within each square.

B. Distributed Constraint Optimization

Distributed Constraint Optimization Problems (DCOPs) are
a type of problems from the field of multi-agent systems where
agents need to cooperatively assign a set of variables in order
to optimize some cost function. DCOPs are an extension of
(distributed) Constraint Satisfaction Problems [24], [25], but in
DCOPs variables can take values from a finite discrete domain,
constraint costs can be any real number, and the goal is to
optimize the sum of all constraint costs. In Section IV-A the
problem will be formally described.

DCOP solvers can be divided in several categories [26]. The
first categorization of solvers divides them into complete and
incomplete, which provide either the global optimal solution,
or a near-optimal solution near the overall best, respectively.
However, since the optimization problems are NP-hard [27],
optimal solvers are by definition exponentially slow for in-
creasing problem sizes. Therefore we are more interested in
incomplete solvers that are not guaranteed to find the optimal
solution, and find a good solution in a feasible time.

1) Iterative solvers:Most incomplete DCOP methods use
an iterative approach and belong to the class of local search
algorithms. This means that these solvers start with an initial
variable assignment and iteratively search the local problem
space for a solution that incrementally improves, until it
converges to a local optimum. Some examples of solvers
belonging to this class are the Distributed Stochastic search
Algorithm (DSA) [28], the MGM (Maximum Gain Message)
or MGM-2 [29] algorithms.

ACLS and MCS-MGM [30] are local search algorithms
that are specially designed to solve a particular type of prob-



lems, namely Asymmetric DCOPs (ADCOPs). In ADCOPs
constraints yield different costs to their involved agents, and
hence the algorithms must take into account the effect an
assignment has on other agents as well as the effect it has
on itself. This property is especially appropriate in use cases
where agents’ actions affect their neighbors’ performance, and
where locally positive choices may actually deteriorate the
global performance.

Another iterative algorithm is the Max-Sum algorithm [31];
it is also an incomplete solver, but it does not do local
search. Instead the Max-Sum algorithm propagates informa-
tion through the problem graph by representing it as a factor
graph, which is a bipartite graph representing both the agents
and the constraints as nodes. The Max-Sum algorithm is
known for finding high quality solutions, even when con-
straints are not binary, but involve multiple variables. Exten-
sions of the Max-Sum algorithm have also allowed it to deal
with cyclic graphs [32] and with asymmetric problems [33].

2) Non-iterative solvers: CoCoA:There exist somecom-
plete non-iterative solvers such as DPOP [34], ADOPT [35]
or AFB [36]. However, since these complete solvers are very
time consuming, for the WPT problem an incomplete solver is
preferable. To the best of our knowledge there is only one non-
iterative incomplete approach, which is offered by the CoCoA
algorithm [14]. We shall provide a more detailed discussion
of the CoCoA algorithm in Section V-B together with our
proposed extension: CoCoAWPT.

The advantage of the non-iterative solvers is that they will
immediately present their final solution. This means thatif the
solver is capable of finding a solution that satisfies the EMR
constraints, it will immediately find this solution, thusnever
violating the EMR thresholds. This is in contrast to iterative
solvers, that might initially violate the constraints, even if it
may eventually find a solution that yields more transmitted
power.

III. SYSTEM MODEL: THE NETWORK OFENERGY

PROVISION

We abstract a WPTN as a graph in the 2D plane, that has
different types of nodes representing either energy transmitters
(ETs), energy receivers (ERs) or sensor nodes. It is assumed
that each ET node is equipped with an antenna that can emit
RF waves to charge ER nodes inside itspower transmission
range wirelessly. Besides, each ER node is assumed to be
equipped with a RF-harvester circuit that accumulates the
harvested energy into the storage component. Moreover, each
sensor nodes is assumed to be able to measure the EMR value
at its specific location.

We further assume that each ET, ER and sensor node is
equipped with a transceiver that allows communication with
the other nodes inside theircommunication range. For the
sake of simplicity, it is assumed that the power transmission
range of the ET nodes are identical to their communication
range, and ET, ER and sensor nodes arestationaryduring the
optimization process.

A. ET Model

The set of ET nodes is denoted byT = {T1, T2, . . . , Tn},
wheren represents the number of ETs. We denote the trans-
mission power ofTi such thati ∈ {1, . . . , n} by Pi and
assume that each ET node can modify it by assigning values
in the interval[Pmin, Pmax]. The set of ER and sensor nodes
with which Ti can communicate and transfer power, i.e. the
set of neighbors ofTi, is denoted byMi.

B. ER Model

We denote the set of ER nodes byR = {R1, R2, . . . , Rm},
wherem represents the number of ERs. EachRj ∈ Mi such
that j ∈ {1, . . . ,m} receives power from the ET nodeTi.
We model the harvested power atRj from Ti based on Friis
transmission equation as

Pi→j = η γ
(dij+β)2Pi (1)

whereγ and β are constants that capture the antenna gains,
the wavelength and the environmental properties of the radio
wave propagation,dij denotes the distance betweenTi andRj ,
andη represents the efficiency coefficient of the RF harvester.
We denote the total received power at receiverRj as

θj =
∑

i:Rj∈Mi
Pi→j . (2)

C. Sensor Model

The set of sensor nodes is denoted byS = {S1, S2, . . . , Sl},
wherel represents the number of sensors. Each sensorSk such
that k ∈ {1, . . . , l} is able to measure the EMR value at its
specific location. We model the EMR value at sensorSk as a
linear function of the total transmitted power, as

Ek = ρ
∑

i:Sk∈Mi

γ
(dik+β)2Pi (3)

where ρ is a constant that captures the linear relationship
between the EMR and received power, anddik denotes the
distance betweenTi andSk.

IV. PROBLEM DESCRIPTION

We define the centralized linear programming problem.
Define EMR threshold asα and letP = [P1, . . . , Pn]

T . We
formulate the optimization problem as

max
P

∑

j θj (4)

s.t. ∀k : Ek ≤ α,

Pmin1 ≤ P ≤ Pmax1

where1 denotes a vector with all components equal to1.

A. Translation into a DCOP

In DCOPs problems are described as a tupleT =
〈A,X ,D,R〉. We can formulate the wireless power trans-
fer problem by stating the that every transmitter inT is
represented by an agentA = {A1, A2, . . . , An} and their
corresponding transmission powers inP are the variables that
are being optimizedX = {X1, X2, . . . , Xn}. One of the main
assumptions in DCOP theory is that all variables must have
finite discrete domainsD, which should contain every possible



power level. This means that the interval[Pmin, Pmax] has to
be discretized to contain a finite set of possible values, yielding
n variable domainsD = {D1, D2, . . . , Dn}, this discretization
can follow a specific set of possible power values that the
energy transmitter allows.

Finally in a DCOP,R is the set of constraints, which map
the assignment of variables to a non-negative cost:C: Di1 ×
Di2 × . . .×Dik → R. In the wireless power transfer problem
statement there are two types of constraints. First we have the
constraints that represent the ER nodesR with a constraint
cost function such that

CRj
= −θj. (5)

Secondly there is the set of sensorsS that are modeled using
a threshold constraint function such that

CSk
=

{

0, if Ek < α,

τ, otherwise,
(6)

where a hard constraint can be simulated by choosingτ =∞
as described in [37], or simply a very high value such that
θj ≪ τ . Hence the full set of constraints can be defined as the
set of both receiver and sensor constraintsR = {CR, CS} such
that the minimization function will maximize the transmitted
power, while minimizing the number of sensors where the
EMR threshold is violated. The DCOP minimization function
is defined simply as

argmin
X

∑

R. (7)

V. TESSA: A SELF-ADAPTIVE WIRELESSCHARGING

SYSTEM

Having presented the system model of wireless power
transfer we consider in this paper, we are ready to present
our charging system. We call itTransferring Energy Safely
by Self-Adaptation(TESSA). TESSA finds maximum wireless
energy provided to the energy receivers subject to the EMR
constraints. The EMR values required as an input to TESSA
optimizer are measured by sensors deployed at specific points
in the charging area.

We first present the high-level charging protocol that gov-
erns the charging requests of the energy receiver devices. Then,
we present the wireless power provision algorithm (denotedas
CoCoA WPT), triggered by TESSA. CoCoAWPT algorithm
description is preceded by the overview of the CoCoA solver,
introduced first in [14], on which CoCoAWPT is based.

A. The Main Charging Protocol

The main charging protocol, executed by each transmitter
Ti in the wireless power transfer network, is presented in
Algorithm 1. The objective of this protocol is to trigger theCo-
CoA WPT algorithm, presented in Algorithm 2 and discussed
in Section V-D, that will determine the sub-optimal power
levels for the transmitters. Initially, the power transmitter can
be turned off and waiting for a receiver inside its neighborhood
Mi to send aCHARGE message. The transmitter will add
the corresponding receiver to its requests listRi and reset

Algorithm 1 Charging Protocol executed by TransmitterTi

1: Ri ← ∅ ⊲ Vector of charge requests for transmitteri

Upon receiveCHARGE from Rj ∈Mi

2: Ri ← Ri ∪ {Rj} ⊲ Add new request from receiverj
3: RESET CoCoA WPT ⊲ Execute CoCoAWPT optimizer

Upon receiveENDCHARGE from Rj ∈ Mi

4: Ri ← Ri \ {Rj} ⊲ Remove request from receiverj
5: if Ri = ∅ then
6: Turn off chargerTi

7: end if
8: RESET CoCoA WPT ⊲ Execute CoCoAWPT optimizer

T1 R1 T2

R2T3

S1

S2

CHARGE

Fig. 1. Illustrative example of TESSA execution. Transmitters T1 and T2

are currently charging the receiverR1 subject to the constraint on the sensor
S1. The receiverR2 sends a charging request to transmittersT1 andT2 that
forcesT3, T2, and in turnT1, to run the CoCoAWPT optimizer again with
also considering the constraints on the sensorS2.

the CoCoA WPT algorithm to recalculate the optimal power
levels (Lines 1–3). Similarly, when aENDCHARGE message
is received, the corresponding receiver is removed from the
requests list, the transmitter is turned off if the requestslist is
empty and CoCoAWPT algorithm is restarted (Lines 5–10).

The rationale behind resetting and in turn restarting the
actual DCOP solver CoCoAWPT is to force the network
to adapt to the new state. As an example, consider Figure 1:
transmittersT1 andT2 are currently charging receiverR1, and
receiverR2 sends a charging request to transmittersT2 and
T3. Since the sensorS1 is already in the neighborhood of
T3 and there is a new sensorS2 that will be solely affected
by the power transmission ofT3, the EMR constraints on
these sensors will effect not only the power level ofT3 but
the current power level ofT2 and in turnT1. Therefore, if
T3 starts/resets CoCoAWPT, the neighboring transmitterT2

should be informed, that will leadT2 to inform T1 so that all
transmitters re-calculate the optimal power levels.

B. CoCoA Overview

Before introducing CoCoAWPT, for the clarity of ex-
position we shall recapitulate on the operation of CoCoA,
presented extensively in [14]. The key strategies of CoCoA
are: (i) allowing regional information exchange between agents
to estimate the effect of an assignment on the neighboring



agents, (ii) delaying choices that may lead to suboptimal
solutions until more information becomes available, and (iii)
use of state machines to avoid race conditions and deadlocks.

The CoCoA algorithm starts at any random agentAi, which
first will send a message to all of its neighbors, inquiring the
effect of any possible assignment for their local cost. Thiswill
trigger its neighbors to compute for every possible assignment
for Xi what the lowest cost would be forAj , taking into
account the current known state and that new assignment. The
resulting cost map is sent back to the inquiring agent who can
now find the minimizing value, by taking the sum over all
received cost maps.

If no unique minimizer is found and at least one neighboring
variable is not yet assigned, the algorithmholdsand waits until
a neighbor has updated its variable before the algorithm is
run again. This mechanism makes sure that premature choices
are avoided until more information is available. If at some
point all agents in a region areholding the algorithm relaxes
the uniqueness restriction until an assignment can be made.
Eventually when an agent assigns a value, the algorithm is
activated at neighboring agents.

C. CoCoA and Race Conditions

The CoCoA algorithm by itself already has some properties
to avoid race conditions, i.e. situations in which two agents
simultaneously make a decision on a variable assignment.
However, they are not fully effective, since two agents may
become simultaneously activated from different neighbors.
Also CoCoA is designed under the assumption that there are
only binary constraints in the problem graph, which means
race conditions are more likely to occur and may involve more
than two agents.

If race conditions would occur in the WPT scenario, this
means that two (or more) transmitters simultaneously decide
on a power level. The situation may occur as shown in
Figure 2, where initially two transmitters (T1 and T2) are
simultaneously actively running the algorithm. As they both
know that a shared sensor (S1) is not exceeding the EMR
threshold, they may decide both to increase their power level.
Not taking into account the assignment of the neighbor, it is
possible for the two agents to assign two values that actually
would violate the EMR constraint.

It is very difficult to avoid race conditions from occurring
in a multi-agent system—however, since CoCoA already pro-
vides a mechanism to disseminate the current state of the
algorithm, we can detect if one has occurred. In the following
section we introduce the extension of CoCoA: CoCoAWPT,
where race conditions are recognized, and concurrent assign-
ments avoided.

D. Solving CoCoA Race Condition Issue: CoCoAWPT

In Algorithm 2 we present the pseudocode of the modified
CoCoA WPT algorithm. Note that in the algorithm we use
φi to denote the state ofAi, which initially is IDLE, but
can be set toACTIVE, HOLD or DONE. Also the uniqueness
boundυ is initially set to 1. It starts out the same way as

T1
S1

E1 = 0W
T2

ACTIVE
X1 = ∅

ACTIVE
X2 = ∅

T1
S1

E1 = 0.3W
T2

DONE
X1 = .5W

DONE
X2 = .8W

Fig. 2. Race condition problem of CoCoA in the wireless powertransfer
context. Two transmitters activated at the same time may inadvertently assign
power levels that may violate the EMR constraint. In the initial state (top), the
transmitters are deciding on a power level. SinceS1 is measuring 0 W both
transmitters decide on a high value eventually exceeding the EMR threshold
of 0.18 W (bottom).

CoCoA does by inquiring the neighbors the costs of local
assignments. Then in lines 4–6 the algorithm checks whether
any neighboring agents are also currently running, and if there
are—it will go back in the algorithm to the point where it will
gather information anew. However, since this current agent
itself is also running, we would introduce a deadlock here,
where two simultaneously activated neighbors would stay in
this cycle ad infinitum. In order to break this potential deadlock
we introduce this notion of ranking.

In line 4, we check the number ofhigher rankedneighbors.
In principle any ranking could be used, as long as all involved
agents agree on the ranking. In our implementation we use the
alphabetical ranking of the identifier of the variable, but any
other rankings, such as based on the physical MAC addresses
of the agents may served as well. Even an random number
selected at the time of this impasse would serve, as long as
there is alwaysone highest ranked agent. Only the highest
ranked agent may finish the variable assignment, and the other
agent(s) will have to restart the algorithm. By doing so we
make sure that no two agents are deciding on an assignment
simultaneously.

Between line 7 and 12, where the algorithm assigns a
variable based on the neighbors’ cost messages, the logic is
the same as for CoCoA. All reveived costs are added, and the
minimizing value is selected if theuniquenessof the minimizer
is less or equal thanυ.

When a message arrives inquiring about the assignment
costs (lines 12–18), nodes gather information from the re-
ceivers based on either their actual measurements or esti-
mations based on the theoretical energy harvesting model as
per (2), and from the sensors by requesting their measured
power level. By using the actual measured power, not the



Algorithm 2 CoCoA WPT Algorithm
Algorithm start onAi:

1: Assignφi ← ACTIVE and inform neighbors
2: Send request to neighbors for cost maps
3: Wait for all responses
4: if number ofACTIVE higher rankedneighbors> 0 then
5: Go to line 2
6: end if
7: Find minimizing assignments forXi

8: if number of minimizer≤ υ or number of idle/active
neighbors is 0then

9: AssignXi andφi ← DONE; send to all neighbors
10: else
11: Assignφi ← HOLD and send to all neighbors
12: end if

Upon receiving cost inquiry message atAj :
13: Get θr from for every∀Rr ∈ Mj

14: Get measurementsEs for every∀Ss ∈Mj

15: for all Xi,k ∈ Di do
16: Calculate costs forXi,k ∩ θr ∩Es

17: end for
18: ReplyAi with all costs

Upon receiving new stateφi from Ai ∈Mj on Aj :
19: Store neighbor’s stateφi

20: if φi is HOLD and φj = HOLD and number of idle/active
neighbors is0 then

21: Increment uniqueness boundυ and repeat algorithm
22: else if φi is DONE and φj is HOLD then
23: Repeat algorithm
24: end if

Upon receivingRESET on Ai:
25: if φj 6= IDLE then
26: Assignφj ← IDLE
27: ForwardRESET to all neighbors
28: end if

model predicted amount, we can make sure that the EMR
thresholds are always satisfied. Using this information we can
compute the local cost with (5) and (6) in line 16.

For handling the state update message from neighbors
(lines 19—24) the same logic is applied as in the original
CoCoA algorithm. Whenever aHOLD state is received, the
algorithm checks if the uniqueness boundυ needs to be
updated, or it will repeat the algorithm if the agent itself is in
the HOLD state and a neighbor informs us that it is finished.

Finally an additional message was added to reset the al-
gorithm. At line 25 we specify that if aRESET message is
received, it will update the local state toIDLE and forward
the message to the neighboring agents, if the state was not
already reset.

VI. EXPERIMENTS

We performed four experiments to evaluate the performance
of the different methods in the wireless power transfer sce-

Transmitter

Receiver

Sensor

Fig. 3. An example randomized graph as generated using the proposed
methods for the simulation experiments withn = 70, m = 60 and l = 50.
There are transmitters with 1 up to 4 receivers visible.

nario. For all experiments we generate 200 problem instances
and let all methods solve the same problem instance. For the
DCOP solvers we had to discretize the potential power levels
into |D| = 20 levels linearly spaced in[Pmin, Pmax] where
Pmin = 0 and Pmax = 10. We set the power transmission
variablesγ = β = 100 and η = ρ = 1. The EMR threshold
was set toα = 0.018, and the threshold violation costτ = 109.
For all experiments we define the total solution cost as the
sum of all constraint costs as per (5) and (6), i.e. negative the
amount of total power consumption plusτ times the number
of sensors where the EMR threshold is violated.

To generate the problem graph we selected the position of
then transmitters using a Poisson point process in 2D space.
Subsequently them receiver andl sensor locations are also
selected using the same method, and their locations are then
scaled such that they span the same area. We determine the
average distance of the third-nearest neighbor in Euclidean
space and define that any sensor or receiver that is within
this distance, is a neighbor of the transmitter, and hence will
receive energy. Using this method we can generate a seemingly
natural distribution of nodes with some variation in the number
of neighbors that a transmitter has. An example of such a
generated graph is shown in Figure 3, withn = 70, m = 60
and l = 50.

All experiments were performed in simulation on a laptop
with an Intel Core i7-6600U at 2.6 GHz and 16 GB of RAM.
For reproducibility of the results all code is available from
https://github.com/coenvl/jSAM (solvers and problem defini-
tion in java) and https://github.com/coenvl/mSAM (experi-
ments and figures in matlab).

A. Experiment 1: Comparing Solvers

In the first experiment we compare the performance of
various DCOP solvers with the centralized solver. For this
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Fig. 4. Various iterative algorithms fail to find a solution that satisfy the
receiver constraints. CoCoAWPT however is capable of finding a valid
solution, similar to the centrally computed optimum.

TABLE I
NUMERICAL RESULTS OF THEDCOPSOLVERS

Algorithm I S M T

CoCoA WPT N/A -1.932 1687 0.3 s
ACLS 27 33 × 109 10378 0.3 s
DSA 16 28 × 109 3148 0.2 s
MCS-MGM 117 13 × 109 34595 1.1 s
Max Sum 49 4× 107 30079 321.7 s

experiment we generated problems withn = 100, m = 75
and l = 50. We compare the results of the DCOP solvers
ACLS, CoCoA WPT, DSA, Max-Sum and MCS-MGM with
a centralized LP solver.

From the results in Figure 4 we can see that from all DCOP
solvers, only CoCoAWPT is consistently capable of finding
solutions that satisfy the EMR threshold constraints. Averaged
over 200 experiments, it found a solution that transmits 1.93 W
in 0.33 s compared to 2.15 W in 0.03 s for the centralized
LP solver. Of course because it is constrained in the exact
values of the power levels, its final solution cost is somewhat
worse. The Max-Sum algorithm did perform relatively well,
but took very long to solve the problem, hence was left out
from Figure 4.

In Table I the numeric results of the experiment are shown.
For every algorithm the amount of iterations (I), the final
solution cost (S), the number of transmitted message (M)
and the time to solve (T). The Max-Sum algorithm violated
constraints 3.5% of the time, but if it does not, the mean costis
–2.067W, which is slightly better than CoCoA’s mean result.
Only in one instance out of the 200 experiments did MCS-
MGM find a solution that did not violate the EMR constraints,
whereas DSA and ACLS never did.

B. Experiment 2: Scalability

In the second experiment we investigate the performance of
the CoCoA WPT algorithm under varying problem sizes. Fix-
ing all other parameters of the problem we generate instances
with increasingly more transmitters (varying between 4 and
1024), and 0.8 times as many receivers and 0.6 times as many
sensors.
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Fig. 5. CoCoA WPT has the capability of solving even larger graphs, and
the distance to the global optimum is linearly dependent on the graph size.

In Figure 5 the solution cost is shown for CoCoAWPT
and the LP solver for increasingly large problems. As can be
seen, CoCoAWPT performance is only linearly worse than
the optimal solution for the problem size. On average the
solution by CoCoAWPT yields 85% the amount of power
compared with the optimal solution found by the LP solver.

C. Experiment 3: Performance Under Model Error

In the third experiment we validate our hypothesis that
using a DCOP approach will keep performing well, even under
unpredictable amounts of energy transmitted. In the TESSA
charging system, the sensor nodes communicate to the ETs,
their actual measurements of the EMR values which do not
always perfectly follow the model as proposed in Section III;
for example because of quantization effects. Similarly, the ET
nodes can either use (i) the amount of measured harvested
power based on the measurements by the ERs or (ii) the
predicted total harvested power based on the theoretical model
represented by in (2).

In all previous experiments we assumed that (i) our theo-
retical model in Section III perfectly represents the amount of
transmitted energy and (ii) both sensors and receivers perform
measurements reflected by the equations (2) and (3). In order
to explore the effect of the measurements on the performance
of our system we introduce an error in the model on how
much energy is received by the receivers and the sensors. i.e.
for any combination of transmitteri and receiverj the amount
of harvested energy is

P ′
i→j = ǫη γ

(dij+β)2Pi (8)

and similarly the amount of EMR measured by a sensork is

E′
k = ǫρ

∑

i:Sk∈Mi

γ
(dik+β)2Pi, (9)

whereǫ is a random noise multiplier from the normal distri-
bution ǫ ∼ N

(

1, σ2
)

: white noise added to the amount of
transmitted power from the original model.

In Figure 6 the results are shown for the CoCoAWPT
algorithm as it solves different problems with an increasing
amount of noise, compared to the centralized LP solver.
We observe that our solver performs well by continuously
satisfying the EMR constraints. The centralized LP solver
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Fig. 6. Noise in the model is not of large influence to the solution quality of
the DCOP solver; however the central solver using the same noise would not
generate valid solutions. The line in the graph shows the theoretical optimum
without model noise.
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Fig. 7. TESSA correctly reacts to disturbances in the environment. We can
see that it finds safe solutions that are always near the optimal solution found
by the LP solver. Upward arrows (green) indicate a random transmitter was
added to the environment, and downward triangles (red) indicate the removal
of a transmitter.

makes its assignments based on the predetermined energy
harvesting and EMR model and cannot take into account the
actual measurements. Consequently, because of modeling and
measurement errors, in practical scenarios it is impossible to
estimate the actual harvested power and in turn the EMR
values [12]. If we apply the solution found by the LP solver
in the noisy model, we find that in all instances except where
σ = 0, some sensor constraints were violated, leading to
invalid solutions.

D. Experiment 4: Dynamic Environment

In the final experiment we investigate the performance of
the TESSA charging system under network dynamics. In this
experiment we generate the a network with 10 transmitters, 8
receivers and 6 sensors. We run the TESSA charging system,
and randomly add or remove agents. Specifically in every
second there is a 5% chance that the network will change,
and if it does, then half of the times a transmitter is added,
and half the time a randomly selected transmitter is removed
from the WPTN. The CoCoAWPT algorithm is reset every
second.

In Figure 7 the total amount of transmitter power is pre-
sented for both TESSA, and for the centralized LP solver
that calculates the optimal power levels. Observe that whena
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Fig. 8. Example of tracking the amount of received power for all ER in the
dynamic experiment, showing the minimum (light blue), average (green) and
maximum (black).
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Fig. 9. The EMR is logged for every sensor in the dynamic environment
experiment. Here we show the EMR threshold at 0.018 W (red line), together
with the minimum (light blue), average (green) and maximum (black) mea-
sured EMR of all sensors.

transmitter is removed from or added to the charging system
which is currently charging receivers, TESSA disseminatesa
RESET message (see Algorithm 1) to start the optimization
process again. Therefore, the charging network reacts to this
disturbance by re-calculating the optimal power levels of the
whole transmitters with respect to the EMR safety constraints.
Eventually, all transmitters will start transmitting energy ac-
cording to the new power levels that comply with the new
safety constraints in accordance with the new structure of the
network.

This network adaptivity is almost impossible to achieve
with the centralized LP solver. The reason is that, for each
transmitter removal/addition, the whole state of the network—
including transmitter power levels, the positions of the re-
ceivers and the sensors—should be collected and sent to the
central entity that calculates the optimal LP solution. What
is more, the results of these calculations should be distributed
back to the corresponding transmitters so that they update their
power levels. Thanks to TESSA and the CoCoAWPT solver,
adaptivity is achieved by only the local interactions amongthe
agents in our system.

VII. D ISCUSSION

In this paper we introduced a new charging system TESSA,
for safe wireless power transfer, that utilizes an efficient



DCOP solver CoCoAWPT to ensure that electromagnetic
radiation levels never exceed safety guidelines. To this end,
we formalized the safe wireless charging problem as a DCOP
so that any DCOP solver can be used to solve this prob-
lem. Then, we introduced a variant of the CoCoA, namely
CoCoA WPT solver that solves the aforementioned problem
in an efficient way in a dynamic network. We compared
CoCoA WPT with the existing solvers and justified that it
is capable of consistently finding solutions that maintain safe
levels of EMR. Then, we presented experiments that showed
the TESSA charging system is self-adaptive in the sense that
it reacts to the network dynamics and always transfers the
network to an EMR-safe state, meanwhile optimizing the total
transmitted power.

Our proposed charging method is based on an extension
of the non-iterative CoCoA algorithm that guarantees the
exclusion concurrent assignments due to race conditions. We
show that it consistently finds solutions that maintain the
EMR thresholds, whereas other DCOP solvers could not. The
amount of transferred power was on average 85% the amount
of power transferred in the theoretical optimal conditions,
independent of the problem size. The losses can be partially
explained by the fact that the solver is incomplete, so better
solutions may be possible. Also, because the DCOP solver
can only choose a power level from a finite set, whereas in
the optimal setting any power level between the minimum and
the maximum can be selected. We also showed that our method
was able to find a solution that satisfies the EMR threshold,
even when there is a moderate amount of model prediction
error in the amount of transferred energy, by communicating
measurements from sensors to transmitters.

We did not perform any experiments involving hardware
implementations, but this would be the reasonable next step
in providing safe wireless charging solutions. This will yield
valuable information about how well the methods perform with
realistic disturbances and practical problems.
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