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Abstract—Wireless Power Transfer (WPT) technologies aim receiver is inversely proportional with its squared dis&an
at getting rid of cables used by consumer devices for energy to a particular RF transmitter, finding an optimal strategy t
provision. As long distance WPT is becoming mature, the hetll  inimjze the charging time of the whole set of receivers and
impact of WPT becomes increasingly important to consider. th . . L
this paper we look at how to maximize the wireless power energy outage Of the transm'tters is not a trivial probleﬂn_[9
transfer to remote devices, while maintaining a safe level fo ~ Electromagnetic Radiation Safety: The electromagnetic
electromagnetic radiation (EMR) for humans that are in the radiation (EMR) at a particular point can be modeled as a
vicinity of the energy transmitters. Classically, this prcblem can Jinear function of the received power [10, Sec. IlI-A], [11,
be described as a centralized optimization problem of findig the Table 1]. Since, several energy transmitters can be active

optimal set of safe power levels at locations of human presea. . It v to ch th b . it mightiee t
Instead, we advocate to formulate this problem as an agent- Simultaneously to charge the nearby receivers, it mig

based Distributed Constraint Optimization Problem (DCOP). case that the total EMR values at some particular points in
As a solution to this problem we introduce CoCoAWPT, a the charging area—which have a contribution from all active

variant of the DCOP solver CoCoA. CoCoAWPT provides  transmitters—can exceed the limit defined by the RF expo-
a solution of similar quality to centralized solver even for a sure regulations [12], [10]. Therefore safe-chargingA/PTN

large scale network involving over a thousand nodes. Based . .
on CoCoA WPT, we propose a self-adaptive charging system: must ensure that it does not create harmful electromagnetic

Transferring Energy Safely by Self-Adaptation (TESSA). TESSA radiation [13], as it is trying to minimize the charging tirbg
keeps the charging network safe even when it is perturbed by increasing the power levels of the transmitters [12].

environmental dynamics. We show that TESSA can reach on  The Problem Statement: The maximization of thaotal
average up to 85% of the theoretical optimal maximum tofal yansmitted powetby finding individual transmission power
transn‘!ltted power (calculated using centralized solutiof while levels of the transmitters, while satisfying tafety con-
satisfying the EMR safety constraints. 8 ' 0 e .
straints are two orthogonal optimization objectives in a dy-
l. INTRODUCTION namic charging environment. New energy transmitters, dis we
Today's ecosystem of the Internet of Things (loT) iss receivers, can be introduced to the charging system. This
composed of millions of embedded devices that can momeans that EMR values at some particular locations can
itor and control the physical world [1]. These devices arexceed the threshold if these new transmitters start provi-
equipped with several hardware components such as sensigaing power. Moreover, it is difficult to model and estimat
(for sensing), actuators (for actuation), microcontmslléfor exactly the received power, and in turn the EMR value, due
computation) and transceivers (for communication), thidt s to the environmental dynamics of the RF wave propagation.
consume considerable amount of power. Fortunately, the fidierefore, a one-shot offline centralizetarging algorithm
search efforts on electronic circuits have already deexbtise that provides the optimal solution to the aforementioneti- op
power consumption of these hardware components to a favization problem is not feasible.
microwatts [2]. This allowed the provision of power wiredgs Self-Adaptive and Safe Wireless Charging:Apparently,
by means of harvesting the energy of radio frequency (REglf-adaptivityshall become a necessary property of a WPT
waves [3], [4]. As the efficiency of harvesting circuits impe, system such that the charging algorithm should transfer the
many devices are being powered wirelessly using only Rfetwork into a safe state, when the safety constraints are
energy without any external power source such as batteriemlated. Unfortunately, we are unaware ofself-adaptive
e.g. WISP [5]. and safecharging algorithm in the current literature that (i)
For sustainable/continuous operation, a wirelessly-pede allows energy transmitters to interact with the energy ixece
loT system requires several dedicated RF energy trangaittand sensors locally in a distributed fashion; (ii) does re# u
that can control their power level to charge nearby recsivaa centralized entity to find sub-optimal power levels subjec
collaboratively forming aWireless Power Transfer Networkto safety regulations; and that (iii) keeps the network safe
(WPTN) [6], [7], [8]. The deployment of this conceptualvia simple interactions among the nodes even though it is
network is an important issue for the provision of wirelesgerturbed by environmental dynamics.
energy in an efficient way. Since the received power by aContributions: In this paper we propose a method based



on Distributed Constraint Optimization (DCOP) solvers twifi ~ However, the electromagnetic safety issues provide addi-
near-optimal solutions for the optimization problems with tional constraints on the wirelessly supplied power. Speci
any centralized entity and by only using local interactionzally, since an EMR value that is above the limits of well-
among the nodes. Accordingly in this paper, we introduakefined regulations [21] is considered as a threat to human
a new wireless charging system called TESSA (Transferrihgalth [22], it introduces an important constraint to thgeob
Energy Safely by Self-Adaptation). TESSA is based on tave of aforementioned optimization problems.

variation of the recently proposed DCOP solver CoCoA [14], To the best of our knowledge, there are only two recent
and is self-adaptive, in the sense that it runs an algorithstudies (from the same authors) that target the optimalegise

on the transmitter nodes that will find an optimal transnoissi power transfer incorporating the human health effects. &-on
power levels. This not only keeps a WPTN optimal in terms ahot centralizedsolution that maximizes the total transmitted
power transfer, but also safe with respect to EMR regulatiorpower subject to the safety constraints at each point on a
Within this context, we provide the following contributisho pre-defined deployment area is presented in [10]—in [23],
the state of the art: the same problem is handled in distributed fashion. Un-

1) We formulate a distributed constraint optimization proortunately, these two studies have a fundamental drawback

the total transmitted power to the receiver devices, i.Bropagation is non-deterministic and modeling errors migh
minimize thecharging time while keeping the network €ad to violate the safety constraints. Moreover, the ithisted

safein the EMR sense using the measurements from tAigorithm in [23] is quite complex and composed of sev-
locally deployed sensors; eral phases. The algorithm employs a distributed redundant
2) A variation on the CoCoA algorithm is proposed, Ca||e§onstraint reduction algorithm, s_plits the deploymentaare
CoCoA WPT, which enables solving the distributed™o small squares and employs linear programming (LP) by
optimization problem, while making sure the EMRCconsidering the local constraints inside each square €Ttie,
thresholds are never violated: it cannot be considered as a self-organizing solution since
3) We present a novel self adaptive charging Syste,tﬁptimization is not performed by local interactions solely
TESSA, based on the CoCoWPT solver. TESSA rather than using the global information within each square
transfers the charging network to a safe state, evgn

when perturbed by environmental dynamics such as new_ . L
energy transmitters joining in the network; Distributed Constraint Optimization Problems (DCOPs) are

4) We compare the CoCoAVPT algorithm with the exist- & type of problems from the field o_f multi-agent sy_stems_where
ing DCOP solvers via simulations. Our results show thg@ents need to cooperatively assign a set of variables &r ord
CoCoA WPT outperforms existing solvers by findingto optimize some cost function. DCOPs are an extension of

a solution near the theoretical optimal, reaching oiflistributed) Constraint Satisfaction Problems [24] ][2fit in
average 85% of the maximum (optimal) solution il?COPs variables can take values from a finite discrete dgmain

terms of power transmission; constraint costs can be any real number, and the goal is to

5) Our charging system based on DCOP solvers mainta®Rtimize the sum of all constraint costs. In Section IV-A the

safe EMR levels, even under reasonable levels of mod¥pPblem will be formally described. _
prediction error, which a centralized solution cannot. DCOP solvers can be divided in several categories [26]. The

first categorization of solvers divides them into complatd a
Il. RELATED WORK incomplete, which provide either the global optimal sauati

) ) ) ) or a near-optimal solution near the overall best, respelgtiv
We provide a brief overview of the related work on W'relesﬁiowever, since the optimization problems are NP-hard [27],

power transfer and distributed constraint optimizatiohjol optimal solvers are by definition exponentially slow for in-
our work builds upon. creasing problem sizes. Therefore we are more interested in
incomplete solvers that are not guaranteed to find the optima
solution, and find a good solution in a feasible time.

The number of 10T nodes continues to grow exponen-1) lterative solvers:Most incomplete DCOP methods use
tially [15], [16]. This exposes a problem of sustainablergge an iterative approach and belong to the class of local search
provision to such a mass of (battery-powered) 10T devicemgorithms. This means that these solvers start with aralnit
Fortunately, the recent advancements in RF energy hangestvariable assignment and iteratively search the local prabl
and low-power electronics, e.g. [17], make it feasible tawpo space for a solution that incrementally improves, until it
ultra low-power microcontroller-based IoT devices wisslly converges to a local optimum. Some examples of solvers
using electromagnetic energy [18]. Wireless power trartgfe belonging to this class are the Distributed Stochasticcbear
vealed several optimization problems that gained conalider Algorithm (DSA) [28], the MGM (Maximum Gain Message)
attention from the research community, e.g. the optimirati or MGM-2 [29] algorithms.
of the harvested power [19], energy outage [20] and chargingACLS and MCS-MGM [30] are local search algorithms
delay [9]. that are specially designed to solve a particular type obpro

Distributed Constraint Optimization

A. Wireless Power Transfer



lems, namely Asymmetric DCOPs (ADCOPs). In ADCOPA. ET Model

constraints yield different costs to their involved agemisd  The set of ET nodes is denoted By= {T},Ts,...,T,},
hence the algorithms must take into account the effect @erer, represents the number of ETs. We denote the trans-
assignment has on other agents as well as the effect it h§Ssion power of7; such thati € {1,...,n} by P; and

on itself. This property is especially appropriate in Useesa assume that each ET node can modify it by assigning values
where agents’ actions affect their neighbors’ performaao€ i the interval[ Pin, Puay). The set of ER and sensor nodes
where locally positive choices may actually deteriorate thyjth which 7; can communicate and transfer power, i.e. the

global performance. set of neighbors of;, is denoted byM;.
Another iterative algorithm is the Max-Sum algorithm [31];

it is also an incomplete solver, but it does not do locd}- ER Model

search. Instead the Max-Sum algorithm propagates informaWe denote the set of ER nodes By= {R;, R, ..., R},

tion through the problem graph by representing it as a facteherem represents the number of ERs. Eaghe M; such

graph, which is a bipartite graph representing both the @gethat j € {1,...,m} receives power from the ET nodE.

and the constraints as nodes. The Max-Sum algorithm We model the harvested power &f from T; based on Friis

known for finding high quality solutions, even when contransmission equation as

straints are not binary, but involve multiple variables tdfx P " p 1

sions of the Max-Sum algorithm have also allowed it to deal =i = a+p b @

with cyclic graphs [32] and with asymmetric problems [33].where~ and 3 are constants that capture the antenna gains,
2) Non-iterative solvers: CoCoAThere exist some&om- the wavelength and the environmental properties of theoradi

plete non-iterative solvers such as DPOP [34], ADOPT [35)ave propagationi;; denotes the distance betweErandR;,

or AFB [36]. However, since these complete solvers are veandrn represents the efficiency coefficient of the RF harvester.

time consuming, for the WPT problem an incomplete solver We denote the total received power at receilieras

preferable. To the best of our knowledge there is only one non

iterative incomplete approach, which is offered by the CACo 0; = Zi:Rj em, Pimsj- @)

algorithm [14]. We shall provide a more detailed discussion. Sensor Model

of the CoCoA a!gonthm in Section V-B together with our The set of sensor nodes is denotedsy: {51, S, . .., Si},

proposed extension: COCoWPT. _ wherel represents the number of sensors. Each sefissuch
The advantage of the non-iterative solvers is that they wWill 5 1. < {1,...,1} is able to measure the EMR value at its

immediately present their final solution. This means thate  gnacific location. We model the EMR value at senspras a
solver is capable of finding a solution that satisfies the EMf{ear function of the total transmitted power, as

constraints, it will immediately find this solution, thuever
violating the EMR thresholds. This is in contrast to iterati Ey =pYisiem, mamrhi )
solvers, that might initially violate the constraints, Bvié it

) : . . Where p is a constant that captures the linear relationship
may eventually find a solution that yields more transmitt

etween the EMR and received power, afi denotes the

power. distance betweeff; and S.
1. SYSTEM MODEL: THE NETWORK OFENERGY IV. PROBLEM DESCRIPTION
PROVISION We define the centralized linear programming problem.

. o T
We abstract a WPTN as a graph in the 2D plane, that hggfme EMR threshold as and letP = [Py, ..., Po]". We

different types of nodes representing either energy tritens Ormulate the optimization problem as
(ETs), energy receivers (ERs) or sensor nodes. It is assumed max > ;0 (4)
that each ET node is equipped with an antenna that can emit s L B <
RF waves to charge ER nodes inside ptswer transmission s:t. k' By < o,
range wirelessly. Besides, each ER node is assumed to be Prinl <P < Praxl
equipped with a RF-harvester circuit that accumulates thgere1 denotes a vector with all components equal to
harvested energy into the storage component. Moreover, eac
sensor nodes is assumed to be able to measure the EMR vAlud ranslation into a DCOP
at its specific location. In DCOPs problems are described as a tufile =

We further assume that each ET, ER and sensor node(& X', D, R). We can formulate the wireless power trans-
equipped with a transceiver that allows communication witler problem by stating the that every transmitter Ihis
the other nodes inside theaommunication rangeFor the represented by an agest = {A;, As,..., A,} and their
sake of simplicity, it is assumed that the power transmissicorresponding transmission powersirare the variables that
range of the ET nodes are identical to their communicati@me being optimized’ = { X1, X5, ..., X,,}. One of the main
range, and ET, ER and sensor nodessaationaryduring the assumptions in DCOP theory is that all variables must have
optimization process. finite discrete domain®, which should contain every possible



power level. This means that the intery&l,i,, Prax] has to Algorithm 1 Charging Protocol executed by Transmiti&r

be discretized to contain a finite set of possible valuesdiyig 1

n variable domain® = {D;, D», ..., D, }, this discretization

can follow a specific set of possible power values that thez.

energy transmitter allows. 3'
Finally in a DCOP,R is the set of constraints, which map

the assignment of variables to a non-negative a0Ost:D;, x

D;, x...x D;, — R. In the wireless power transfer problem 4:

statement there are two types of constraints. First we Heve t 5:

constraints that represent the ER nodeswith a constraint  6:

cost function such that 7:

R; <0 > Vector of charge requests for transmitter

Upon receiveCHARGE from R; € M;
R; + R; U{R;} > Add new request from receiver

: RESET CoCoA WPT 1> Execute CoCoAWPT optimizer

Upon receivéeENDCHARGE from R; € M;
Ri + R\ {R;} > Remove request from receivgr
if R; = () then
Turn off chargerT;
end if
RESET CoCoA WPT > Execute CoCoAWPT optimizer

(5) 8:

Secondly there is the set of sensérghat are modeled using
a threshold constraint function such that

0,
T,

where a hard constraint can be simulated by choosirgeo
as described in [37], or simply a very high value such that
; < 7. Hence the full set of constraints can be defined as the
set of both receiver and sensor constrafts: {Cr, Cs} such
that the minimization function will maximize the transreitt
power, while minimizing the number of sensors where the

EMR threshold is violated. The DCOP minimization function

is defined simply as Fig. 1. lllustrative example of TESSA execution. Transergt/; and 7>
are currently charging the receivé; subject to the constraint on the sensor

S1. The receiverR2 sends a charging request to transmitt€ysand 7 that

S

if By < o,
otherwise

(6)

arg;nm Z R. (7) forcesT3s, T2, and in turnTy, to run the CoCoAWPT optimizer again with
also considering the constraints on the serf$ar
V. TESSA: A SLF-ADAPTIVE WIRELESSCHARGING
SYSTEM

Having presented the system model of wireless powttte CoCoAWPT algorithm to recalculate the optimal power
transfer we consider in this paper, we are ready to presésiels (Lines 1-3). Similarly, when ENDCHARGE message
our charging system. We call ransferring Energy Safely is received, the corresponding receiver is removed from the
by Self-AdaptatioTESSA). TESSA finds maximum wirelessrequests list, the transmitter is turned off if the requéistds
energy provided to the energy receivers subject to the EMffhpty and CoCoAWPT algorithm is restarted (Lines 5-10).
constraints. The EMR values required as an input to TESSAThe rationale behind resetting and in turn restarting the
optimizer are measured by sensors deployed at specificspogdtual DCOP solver CoCoAVPT is to force the network
in the charging area. to adapt to the new state. As an example, consider Figure 1:

We first present the high-level charging protocol that gowransmittersl’; and7 are currently charging receivét;, and
erns the charging requests of the energy receiver devites, T receiver R, sends a charging request to transmitt&ssand
we present the wireless power provision algorithm (denatedT3. Since the sensof; is already in the neighborhood of
CoCoA WPT), triggered by TESSA. CoCoAVPT algorithm T3 and there is a new sensSk that will be solely affected
description is preceded by the overview of the CoCoA solvdsy the power transmission dfs, the EMR constraints on
introduced first in [14], on which CoCoAVPT is based. these sensors will effect not only the power levelTof but
. . the current power level of, and in turnT;. Therefore, if
A. The Main Charging Protocol T; starts/resets CoCoAVPT, the neighboring transmittér,

The main charging protocol, executed by each transmitt§fiould be informed, that will lead, to inform 7} so that all

T; in the wireless power transfer network, is presented {fansmitters re-calculate the optimal power levels.
Algorithm 1. The objective of this protocol is to trigger tB®-

CoA_WPT algorithm, presented in Algorithm 2 and discussed- COCOA Overview

in Section V-D, that will determine the sub-optimal power Before introducing CoCoAWPT, for the clarity of ex-
levels for the transmitters. Initially, the power trangmitcan position we shall recapitulate on the operation of CoCoA,
be turned off and waiting for a receiver inside its neightoarth presented extensively in [14]. The key strategies of CoCoA
M; to send aCHARGE message. The transmitter will addare: (i) allowing regional information exchange betweeerdag

the corresponding receiver to its requests Rstand reset to estimate the effect of an assignment on the neighboring



agents, (ii) delaying choices that may lead to suboptimal
solutions until more information becomes available, anmy (i

use of state machines to avoid race conditions and deadlocks S1 b
The CoCoA algorithm starts at any random agéntwhich @—> By — ow4@
first will send a message to all of its neighbors, inquiring th
effect of any possible assignment for their local cost. Tils ACTI VE ACTI VE
. . . . . X1=0 Xo=10
trigger its neighbors to compute for every possible assimm
for X; what the lowest cost would be fad;, taking into l}

account the current known state and that new assignment. The

resulting cost map is sent back to the inquiring agent who can T —

now find the minimizing value, by taking the sum over all T

received cost maps. @—> 51 @
If no unique minimizer is found and at least one neighboring E1=03W

variable is not yet assigned, the algoritholdsand waits until DONE DONE

a neighbor has updated its variable before the algorithm is X1=.5W X2 =8W

run again. This mechanism makes sure that premature choices

are avoided until more information is available. If at SOmpig. 2. Race condition problem of CoCoA in the wireless podansfer

point all agents in a region atelding the algorithm relaxes context. Two transmitters activated at the same time mayvirently assign

the unigueness restriction until an assignment can be magpver levels that may violate the EMR constraint. In theahitate (top), the
transmitters are deciding on a power level. Siitgeis measuring 0 W both

Evgntually Whe_n an _agent assigns a value, the algor|thmtr§1$mitters decide on a high value eventually exceediegetdR threshold
activated at neighboring agents. of 0.18 W (bottom).

C. CoCoA and Race Conditions

The CoCoA algorithm by itself already has some properties L :
to avoid race conditions, i.e. situations in which two agenFOQOA dotes 'Ik'?\/ mqw;mg tArrleGr;?ghll)ors_t:]he ChOSti of Aofr?l
simultaneously make a decision on a variable assignmeﬁ.s'gnmen s. 1hen n fines 4-6 the algorithm checks whether

However, they are not fully effective, since two agents ma y neighboring agents are also currently running, anceifeth

become simultaneously activated from different neighbo re—it will go back in the algorithm to the point where it wil

Also CoCoA is designed under the assumption that there the_r mformatloq anew. Howev_er, since this current agent
elf is also running, we would introduce a deadlock here,

only binary constraints in the problem graph, which meaﬁt%1 wo simult | tivated neiahb d stay i
race conditions are more likely to occur and may involve moyé. ere wo simuttianeously activated neighbors would stay in
this cycle ad infinitum. In order to break this potential dea#l

than two agents. introd thi " f ranki
If race conditions would occur in the WPT scenario, thi¥/€ Introduce this notion of ranking.

means that two (or more) transmitters simultaneously decid ' line 4, we check the number aigher rankedheighbors.

on a power level. The situation may occur as shown ff Principle any ranking could be used, as long as all invdlve
Figure 2, where initially two transmittersT( and T») are agents agree on t.he ranklngl. In our mplementapon we use the
simultaneously actively running the algorithm. As theyrbota|phabet'c?‘| ranking of the identifier of the. variable, bay a
know that a shared senso§i) is not exceeding the EMR other rankings, such as based on the physical MAC addresses
threshold, they may decide both to increase their powet.lev8f the agents may served as well. Even an random number
Not taking into account the assignment of the neighbor, it f§€cted at the time of this impasse would serve, as long as

possible for the two agents to assign two values that agtudiiere is alwaysone highest ranked agent. Only the highest
would violate the EMR constraint. ranked agent may finish the variable assignment, and the othe

It is very difficult to avoid race conditions from occurring29ent(s) will have to restart the algorithm. By doing so we
in a multi-agent system—however, since CoCoA already er_‘-ake sure that no two agents are deciding on an assignment
vides a mechanism to disseminate the current state of fgultaneously. _ _
algorithm, we can detect if one has occurred. In the follgwvin Between line 7 and 12, where the algorithm assigns a
section we introduce the extension of CoCoA: CoCPT, Variable based on the neighbors’ cost messages, the logic is
where race conditions are recognized, and concurrentrassigie same as for CoCoA. All reveived costs are added, and the

ments avoided. minimizing value is selected if theniquenessf the minimizer
_ - is less or equal than.
D. Solving CoCoA Race Condition Issue: COCUWPT When a message arrives inquiring about the assignment

In Algorithm 2 we present the pseudocode of the modifietbsts (lines 12-18), nodes gather information from the re-
CoCoA WPT algorithm. Note that in the algorithm we useeivers based on either their actual measurements or esti-
¢; to denote the state ofl;, which initially is | DLE, but mations based on the theoretical energy harvesting model as
can be set tACTI VE, HOLD or DONE. Also the uniqueness per (2), and from the sensors by requesting their measured
bound v is initially set to 1. It starts out the same way apower level. By using the actual measured power, not the



Algorithm 2 CoCoA WPT Algorithm

10:
11:
12:

13:
14:
15:
16:
17:
18:

19:
20:

21:
22:
23:
24:

25:
26:
27:
28:

© N UM ®WNPR

Algorithm start onA;:

: Assign ¢; < ACTI VE and inform neighbors

: Send request to neighbors for cost maps

: Wait for all responses

. if number ofACTI VE higher rankedneighbors> 0 then

Go to line 2
end if

: Find minimizing assignments fak;
. if number of minimizer< v or number of idle/active

neighbors is Ghen

Assign X; and ¢; < DONE; send to all neighbors
else

Assign¢; + HOLD and send to all neighbors
end if

Upon receiving cost inquiry message Aj:
Getd, from for everyvVR, € M;
Get measurements; for everyvS, € M;
for all X, € D; do

Calculate costs foX; , N6, N Es
end for
Reply A; with all costs

Upon receiving new state, from A; € M; on A;:
Store neighbor’s state;
if ¢; is HOLD and ¢; = HOLD and number of idle/active
neighbors i9) then

Increment uniqueness boundand repeat algorithm
else if ¢; is DONE and ¢; is HOLD then

Repeat algorithm
end if

Upon receivingrRESET on A;:
if ¢; # | DLE then
Assign¢; < | DLE
ForwardrRESET to all neighbors
end if

model predicted amount, we can make sure that the E
thresholds are always satisfied. Using this information e c

compute the local cost with (5) and (6) in line 16.

For handling the state update message from neighb
(lines 19—24) the same logic is applied as in the origin
CoCoA algorithm. Whenever &OLD state is received, the
algorithm checks if the uniqueness boumdneeds to be

updated, or it will repeat the algorithm if the agent itsslfin

the HOLD state and a neighbor informs us that it is finished.
Finally an additional message was added to reset the
gorithm. At line 25 we specify that if ®ESET message is

received, it will update the local state tdLE and forward

the message to the neighboring agents, if the state was

already reset.

V1. EXPERIMENTS
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Fig. 3. An example randomized graph as generated using theogped
methods for the simulation experiments with= 70, m = 60 andl = 50.
There are transmitters with 1 up to 4 receivers visible.

nario. For all experiments we generate 200 problem instance
and let all methods solve the same problem instance. For the
DCOP solvers we had to discretize the potential power levels
into |D| = 20 levels linearly spaced ifiPyin, Pmax] Where
Puin = 0 and P, . = 10. We set the power transmission
variablesy = g = 100 andn = p = 1. The EMR threshold
was set tax = 0.018, and the threshold violation cost= 10°.

For all experiments we define the total solution cost as the
sum of all constraint costs as per (5) and (6), i.e. negalige t
amount of total power consumption plastimes the number

of sensors where the EMR threshold is violated.

To generate the problem graph we selected the position of
the n transmitters using a Poisson point process in 2D space.
Subsequently then receiver and sensor locations are also
selected using the same method, and their locations are then
scaled such that they span the same area. We determine the

Nﬂ;éerage distance of the third-nearest neighbor in Eudiidea

space and define that any sensor or receiver that is within
this distance, is a neighbor of the transmitter, and hendle wi
receive energy. Using this method we can generate a segming|

gwlgtural distribution of nodes with some variation in the fn&m

of neighbors that a transmitter has. An example of such a
generated graph is shown in Figure 3, with= 70, m = 60
and! = 50.
All experiments were performed in simulation on a laptop
w,';h an Intel Core i7-6600U at 2.6 GHz and 16 GB of RAM.
or reproducibility of the results all code is available rfro
https://github.com/coenvl/j]SAM (solvers and problem diefi
tion in java) and https://github.com/coenvi/mSAM (experi

rq10etnts and figures in matlab).

A. Experiment 1: Comparing Solvers

We performed four experiments to evaluate the performancdn the first experiment we compare the performance of
of the different methods in the wireless power transfer scearious DCOP solvers with the centralized solver. For this
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Fig. 5. CoCoAWPT has the capability of solving even larger graphs, and

Fig. 4. Various iterative algorithms fail to find a solutiohat satisfy the the distance to the global optimum is linearly dependenthengraph size.

receiver constraints. CoCoAVPT however is capable of finding a valid
solution, similar to the centrally computed optimum.

In Figure 5 the solution cost is shown for CoCOAPT

TABLE | and the LP solver for increasingly large problems. As can be
NUMERICAL RESULTS OF THEDCOPSOLVERS seen, CoCoAWPT performance is only linearly worse than
Aoor : S v = the optimal solution for the problem size. On average the
oritnm . .
9 solution by CoCoAWPT yields 85% the amount of power
CoCoAWPT N/A  -1.932 1687  0.3s i i i
aoLs 27 33410° 10378  04s compared with the optimal solution found by the LP solver.
DSA 16 28 x 10° 3148 0.2s . .
MCS-MGM 117 13 x10° 34595 11s C. Experiment 3: Performance Under Model Error
Max_Sum 49 30079 321.7s In the third experiment we validate our hypothesis that

using a DCOP approach will keep performing well, even under
unpredictable amounts of energy transmitted. In the TESSA
experiment we generated problems with= 100, m = 75  charging system, the sensor nodes communicate to the ETs,
and/ = 50. We compare the results of the DCOP solvefgeijr actual measurements of the EMR values which do not
ACLS, CoCoA WPT, DSA, Max-Sum and MCS-MGM with gways perfectly follow the model as proposed in Section I
a centralized LP solver. for example because of quantization effects. Similarlg, BT
From the results in Figure 4 we can see that from all DCOfpges can either use (i) the amount of measured harvested
solvers, only CoCoAWPT is consistently capable of findingpower based on the measurements by the ERs or (i) the
solutions that satisfy the EMR threshold constraints. Aged predicted total harvested power based on the theoreticaémo
over 200 experiments, it found a solution that transmit8 WO represented by in (2).
in 0.33s compared to 2.15W in 0.03s for the centralized | g previous experiments we assumed that (i) our theo-
LP solver. Of course because it is constrained in the exagtical model in Section Il perfectly represents the antafn
values of the power levels, its final solution cost is soméwhggnsmitted energy and (i) both sensors and receiversperf
worse. The Max-Sum algorithm did perform relatively welljmeasurements reflected by the equations (2) and (3). In order
but took very long to solve the problem, hence was left oy explore the effect of the measurements on the performance
from Figure 4. of our system we introduce an error in the model on how
In Table | the numeric results of the experiment are showgych energy is received by the receivers and the sensars. i.e

For every algorithm the amount of iterations (1), the finar any combination of transmittérand receivey the amount
solution cost (S), the number of transmitted message (M) harvested energy is

and the time to solve (T). The Max-Sum algorithm violated
constraints 3.5% of the time, but if it does not, the mean isost Pl =engmeb (8)

—2.067W, which is slightly better than CoCoA's mean result. I .
Only in one instance out of the 200 experiments did MC§-nd similarly the amount of EMR measured by a sersa

MGM find a solution that did not v!olate the EMR constraints, E, =ep Zi:SkeMi mpi, (9)
whereas DSA and ACLS never did.

. - wheree is a random noise multiplier from the normal distri-
B. Experiment 2: Scalability bution ¢ ~ A (1,02): white noise added to the amount of

In the second experiment we investigate the performancetansmitted power from the original model.
the CoCoAWPT algorithm under varying problem sizes. Fix- In Figure 6 the results are shown for the CoCO#PT
ing all other parameters of the problem we generate instanedgorithm as it solves different problems with an incregsin
with increasingly more transmitters (varying between 4 aramount of noise, compared to the centralized LP solver.
1024), and 0.8 times as many receivers and 0.6 times as méviy observe that our solver performs well by continuously
Sensors. satisfying the EMR constraints. The centralized LP solver



— 0.1 ;

B """ CoCoA_WPT —
T —LPSolver

gfms ................................................... %0.08

-0 S e :

N I (N N B £ 0.06

= 205 1 &

]

e B o.04

g 210 E >

Z 3

S 2.15¢ . 30!

S [a%

= o, | | | | | | | | | of ‘ ‘ ‘ ‘ | | ‘
0 002 004 006 008 0.1 0.2 014 016 018 02 0 50 100 150 200 250 300 350

Model Noise (o) Time (s)

Fig. 6. Noise in the model is not of large influence to the sofuguality of
the DCOP solver; however the central solver using the sarse neould not
generate valid solutions. The line in the graph shows therétieal optimum
without model noise.

Fig. 8. Example of tracking the amount of received power fbER in the
dynamic experiment, showing the minimum (light blue), ager (green) and
maximum (black).
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Fig. 7. TESSA correctly reacts to disturbances in the enwirent. We can
see that it finds safe solutions that are always near the apsiolution found
by the LP solver. Upward arrows (green) indicate a randomstratter was

Fig. 9. The EMR is logged for every sensor in the dynamic emnrent
experiment. Here we show the EMR threshold at 0.018 W (reg),liimgether
with the minimum (light blue), average (green) and maximuiagk) mea-
sured EMR of all sensors.

added to the environment, and downward triangles (redrateithe removal
of a transmitter.

transmitter is removed from or added to the charging system
makes its assignments based on the predetermined end¥ich is currently charging receivers, TESSA disseminates
harvesting and EMR model and cannot take into account tRESET message (see Algorithm 1) to start the optimization
actual measurements. Consequently, because of modelihg BfPcess again. Therefore, the charging network reactsigo th
measurement errors, in practical scenarios it is impassibl disturbance by re-calculating the optimal power levelshef t
estimate the actual harvested power and in turn the EMFhOle transmitters with respect to the EMR safety constsain
values [12]. If we apply the solution found by the LP solveventually, all transmitters will start transmitting eggrac-
in the noisy model, we find that in all instances except wheg@rding to the new power levels that comply with the new
o = 0, some sensor constraints were violated, leading sgfety constraints in accordance with the new structurdef t
invalid solutions. network.

This network adaptivity is almost impossible to achieve

D. Experiment 4: Dynamic Environment with the centralized LP solver. The reason is that, for each

In the final experiment we investigate the performance §gnsmitter removal/addition, the whole state of the nekwe
the TESSA charging system under network dynamics. In tH[g)c_Iudlng transmitter power levels, the positions of the re
experiment we generate the a network with 10 transmittersC8vers and the sensors—should be collected and sent to the
receivers and 6 sensors. We run the TESSA charging Syst&%r’wtral entity that calculates the op_t|mal LP solutlor_w. Wha
and randomly add or remove agents. Specifically in evel§more, the results of these calculations should be digib
second there is a 5% chance that the network will chané@}Ck to the corresponding transmitters so that they uptate t
and if it does, then half of the times a transmitter is addeBOWer levels. Thanks to TESSA and the CoC##PT solver,
and half the time a randomly selected transmitter is remov@faptivity is achieved by only the local interactions amirey
from the WPTN. The CoCoANPT algorithm is reset every @9€nts in our system.
second.

In Figure 7 the total amount of transmitter power is pre- VIl
sented for both TESSA, and for the centralized LP solver In this paper we introduced a new charging system TESSA,
that calculates the optimal power levels. Observe that véeherfior safe wireless power transfer, that utilizes an efficient

DIscussION



DCOP solver CoCoAWPT to ensure that electromagnetic(s]
radiation levels never exceed safety guidelines. To thi, en
we formalized the safe wireless charging problem as a DCO
so that any DCOP solver can be used to solve this prob-
lem. Then, we introduced a variant of the CoCoA, namely
CoCoA WPT solver that solves the aforementioned probIeHHO]
in an efficient way in a dynamic network. We compared
CoCoA WPT with the existing solvers and justified that if11]
is capable of consistently finding solutions that maintaifes
levels of EMR. Then, we presented experiments that show %
the TESSA charging system is self-adaptive in the sense tﬁa
it reacts to the network dynamics and always transfers the
nMkamanEMRSMeQManmmmhboMmumgmdmﬁﬂ
transmitted power.

Our proposed charging method is based on an extension
of the non-iterative CoCoA algorithm that guarantees tfy@u
exclusion concurrent assignments due to race conditioes.
show that it consistently finds solutions that maintain the
EMR thresholds, whereas other DCOP solvers could not. THél
amount of transferred power was on average 85% the amo
of power transferred in the theoretical optimal conditions
independent of the problem size. The losses can be partially
explained by the fact that the solver is incomplete, so bettd’]
solutions may be possible. Also, because the DCOP solver
can only choose a power level from a finite set, whereas in
the optimal setting any power level between the minimum and
the maximum can be selected. We also showed that our met
was able to find a solution that satisfies the EMR threshol[d,
even when there is a moderate amount of model predictiBfl
error in the amount of transferred energy, by communicating
measurements from sensors to transmitters. [20]

We did not perform any experiments involving hardware
implementations, but this would be the reasonable next S[ﬁ%
in providing safe wireless charging solutions. This wilelg
valuable information about how well the methods perfornhwit
realistic disturbances and practical problems. (22]
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