
Large Scale Track Analysis for Wide Area Motion Imagery
Surveillance

C.J. van Leeuwen, J.R. van Huis, and J. Baan

TNO Technical Sciences, Oude Waalsdorperweg 63, 2597 AK The Hague, Netherlands

ABSTRACT

Wide Area Motion Imagery (WAMI) enables image based surveillance of areas that can cover multiple square
kilometers. Interpreting and analyzing information from such sources, becomes increasingly time consuming
as more data is added from newly developed methods for information extraction. Captured from a moving
Unmanned Aerial Vehicle (UAV), the high-resolution images allow detection and tracking of moving vehicles,
but this is a highly challenging task. By using a chain of computer vision detectors and machine learning
techniques, we are capable of producing high quality track information of more than 40 thousand vehicles per
five minutes. When faced with such a vast number of vehicular tracks, it is useful for analysts to be able to
quickly query information based on region of interest, color, maneuvers or other high-level types of information,
to gain insight and find relevant activities in the flood of information.

In this paper we propose a set of tools, combined in a graphical user interface, which allows data analysts to
survey vehicles in a large observed area. In order to retrieve (parts of) images from the high-resolution data, we
developed a multi-scale tile-based video file format that allows to quickly obtain only a part, or a sub-sampling
of the original high resolution image. By storing tiles of a still image according to a predefined order, we can
quickly retrieve a particular region of the image at any relevant scale, by skipping to the correct frames and
reconstructing the image. Location based queries allow a user to select tracks around a particular region of
interest such as landmark, building or street. By using an integrated search engine, users can quickly select
tracks that are in the vicinity of locations of interest. Another time-reducing method when searching for a
particular vehicle, is to filter on color or color intensity. Automatic maneuver detection adds information to the
tracks that can be used to find vehicles based on their behavior.

Keywords: Wide Area Motion Imagery, Big Data, Motion in Motion, Multi-scale Images, Data Analysis

1. INTRODUCTION

In a society with an ever-expanding rich stream of information, the analysis and interpretation of large amounts
of data becomes increasingly time consuming. As new methods for gathering data are developed, more sources
of information are added to the already existing streams of data, and existing data interpretation methods are
augmented with more input. Analysis of large amounts of data must be done efficiently to avoid overloading
the system with irrelevant information, yet reliably enough to obtain the useful facts that the human analysts
want to retrieve. Since the introduction of computer data analysis, intelligent software aids human analysts in
conquering the flood of data that is provided by sensors, in order to filter out the noise, and provide new insights
that were impossible or extremely tedious to obtain manually.

Video is one type of data streams that is capable of providing a tremendous amount of information on
practically any subject, but is also capable of providing a lot of noise that tends to occlude the useful data.
Especially in the case of Wide Area Motion Imagery (WAMI), in which a single frame covers multiple square
kilometers, extracting relevant events is a challenging task. Moreover, typically such data is gathered using
Unmanned Aerial Vehicles (UAVs), which can gather data for extended periods of time, all of which has to be
processed in order to be analyzed afterwards.

Further author information: (Send correspondence to C.J. van Leeuwen.)
C.J. van Leeuwen.: E-mail: coen.vanleeuwen@tno.nl



In this paper we propose a set of tools, which allows data analysts to search for events in a large image
database obtained from an airborne platform, and in particular for surveillance of vehicles in the complete
observed area. The tools that will be described in this paper are methods for quickly retrieving images for
multiple scales, automated methods for extracting vehicle tracks from the video, track analysis algorithms that
add high-level information to the vehicle trajectories and finally different types of queries to search for events.
Combined into a Graphical User Interface (GUI), these components provide a powerful tool for inspecting object
tracks from large WAMI datasets. The goal of this tool is to allow analysts to search for suspicious or anomalous
events, or to find and track vehicles that were observed at a given time and location.

The setup of the paper is as follows: in Section 2 the different methods are introduced, and in Section 3 the
used platform and video data will be described. Following, in Section 4 the results will be shown, and finally in
Section 5 the discussion and drawn conclusions are presented.

2. METHODS

The proposed GUI can be used to search through the complete dataset, enriched with information that is either
provided by the automated image processing algorithms or information from third parties. The video images
are stabilized and warped to the ground plane, such that they can be inspected from a top-down perspective.
By only loading the relevant area in a resolution suitable to the current zoom-level, excessive loading of data is
avoided, and users can quickly inspect the video while maintaining a high quality visual overview. The automatic
vehicle tracking system1 provides information from all observed vehicles as they navigate through the area. The
trajectory information can be shown to the user as an overlay on the video, which will reflect the vehicle’s
movement as the track progresses, or on a static map. Third party information provides information such as
street names, landmarks or other known locations∗. A schematic overview of the components in the tool is shown
in Figure 1.

camera 

 images 

Transformation 

to UTM 

Multi-scale 

storage 

Multi-scale 

UTM storage 

Vehicle 

detection 

Filtering and 

tracking 
GUI 

3rd party 

information 

Trajectory 

analysis 

Display of vehicles 

Figure 1: Flowchart depicting the different components in the tool.

2.1 Storage of imagery

To allow fluid navigation through the high definition video, we intend to store and retrieve the images in such
a way that we only need to load the data that we present to the user. Normally the complete 116 Megapixel
image is loaded, and is cropped and rescaled at the last moment before showing the requested part of the image
on screen. There is a delay in loading excess data, either from parts that are out of the region-of-interest (ROI)
or excess data that would not render due to the display resolution, and secondly there is a delay from having
to crop and rescale the image when they are requested. In order to reduce the loading time we propose the
following method for storing and retrieving image data inspired by the work of van Brandenburg et al.2

First to avoid having to load the parts of the image that lie outside of the current view, we store the images
as a sequence of tiles in a video stream. Every tile has a predefined width ht and height wt (in the current
implementation both are set to 128 pixels). When a certain part of the image is retrieved, the corresponding
frame numbers can be computed, and only that part of the image is loaded by only decoding the relevant video

∗In the current implementation this information is provided using Google Places (https://developers.google.com/
places/), but other plugins could be used as well.

https://developers.google.com/places/
https://developers.google.com/places/


(a) Original view from camera. (b) Warped image to ground plane.

Figure 2: An example of the original image, and warped to the ground plane.

frames. To solve loading more images than is necessary for displaying at the screen resolution, instead of storing
one copy of an image, we store multiple copies at different scales. By storing images at a ratio ρ at scale
σ = {0, 1, ..., 12} using

ρ(σ) = 2−
σ
2 , (1)

we make sure that for any required resolution we load at most
√

2 the number of pixels required. Of course by
using a different scaling function we could reduce this even more, but this is a good balance between required
storage and reading performance. Due to the tile-based strategy we have to load four strips of pixels outside the
ROI that are at most ht pixels wide and wt pixels high. This means that for a requested image of hi ×wi pixels
we have to load at most √

2hiwi + 2wthi + 2htwi + 4htwt (2)

pixels. In practice this means that on average we need to read about twice the data that would be strictly
required, instead of having to read over 1000 times the data.

The exact same procedure is repeated for the original image, warped to the ground plane, which results in a
top-down view as can be seen in Figure 2. This image is alway rotated in such a way that north is up, and can
be aligned with a map. Because it is stable over time, it is shown as the overview image in the GUI, making it
easier and more intuitive to follow vehicles on this warped image. Furthermore, it allows the overlay of external
information such as streets, landmarks or other known locations.

2.2 Vehicle tracking

To obtain vehicle information from the video stream, a tracking system is used to obtain accurate, long tracks of
the majority of the vehicles in the image,3 which is schematically depicted in Figure 3. The first step in obtaining
these vehicle trajectories is to use a static object detector, trained using an Adaboost training algorithm on Haar
features.4 This detector works on individual images and therefore does not depend on image motion stabilization
or stitching. The training set is created by manually annotating the vehicles in six frames, which due to the high
resolution of the images is enough to create a reliable model. The resulting detector is then applied to all image
frames in the video, and the resulting detections are stored as bounding box coordinates.

The detections obtained in the first step are filtered based on their altitude. In order to determine these
altitudes, first a 3-dimensional reconstruction of the area was created using stereoscopic 3D estimation.5 Using
this 3D reconstruction, a height map for each video frame could be made. These height maps were then used
to estimate the height of each detection. This filtering removes false vehicle detections, although vehicles in car
parks located on top of buildings were incorrectly discarded.



camera 

 images 

Vehicle 

detection 

Altitude-based 

Filtering 

Multi-camera 

tracking 
tracks 

3D reconstruction 

Figure 3: Flowchart depicting the object tracking process.

Finally the trajectories are constructed based on the remaining detections. Tracks are lists of associated
detections, which match the expected position, based on the previous detections of that vehicle. The prediction
of the tracks is performed by template matching.6 This approach has the advantage that 1) it counters the
inaccuracy of the GPS data that is embedded in the video data and 2) it can find matches when the vehicle
detector missed a detection.

For a new frame, the updated location of a vehicle is predicted and converted to image coordinates. The
calculated image coordinates are the center of the search area for the template matching, which is done in the
Fourier domain by calculating the sum of squared differences. For speed considerations the search area is typical
50 pixels in each direction outside the template. The template matching returns the 10 best matches.

If the cost of the best match c1 is significantly smaller than the cost of the second best match c2 such
thatc2 > 1.2× c1; the best match becomes the new prediction. If this is not true, the center of the search area
will be the new prediction. If any the bounding box of a detection overlaps more than 50% with the predicted
location of the track, the detection is added to the track.

2.3 Track analysis and maneuver based queries

Vehicle route analysis is an important instrument for finding vehicles of interest. This instrument can be used
to retrieve vehicles that are known to have driven a certain route or to retrieve vehicles that show abnormal
behavior. Abnormal route behavior might involve vehicles that drive completely around a certain building or
house block. An algorithm is constructed, which enables rotation based turn analysis by adding the turn angle
to each track element. After filtering this instantaneous track angle over using a low-frequency filter, the queries
can be defined to filter for vehicles that perform maneuvers such as “U-turn”, “left turn” and “right turn”.

2.4 Location based queries

In order to allow the user to limit the visible tracks, to those that are in a specific region we allow three different
types of queries:

Line queries Line queries search for vehicles that passed at some time a virtual line that is drawn on the
map. The intersections of all tracks are sought with the drawn line segment, and only tracks that have a valid
intersection are returned for visualization. This type of query is especially useful for filtering vehicles that crossed
a specific street or a bridge.

Bounding box queries By selecting a bounding box on the map, the user can select any region in which he
is interested. Only vehicles that were in any frame within this rectangle (based on the UTM coordinates) are
returned. Typically this is useful when the user wants to inspect vehicles within a particular area, defined by
the user’s knowledge or interest.

Location based queries The location based query, filters vehicles that were within a given radius of a known
location. This contrasts with the bounding box queries in the sense that the user can search for a place of interest,
such as a street, landmark, monument or a building, and all vehicles that were at any time within a provided
distance to that place are returned. In the current implementation we used the a public third-party location
API, which also allows to search for places such as gas stations, banks, musea or schools. This is particularly
useful if the user is interested in vehicles that were in an area directly related to publicly known location.



-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

X coordinate in UTM (m)

-1500

-1000

-500

0

500

1000

1500

2000

2500

Y
 c

o
o

rd
in

a
te

 i
n

 U
T

M
 (

m
)

Camera field of view

Camera 1

Camera 2

Camera 3

Camera 4

Figure 4: The field-of-views of the four cameras plotted on the ground plane in UTM coordinates.

2.5 Color based queries

The last type of query is color-based; which is applicable when a user is interested in retrieving only vehicles
of a particular color or “lightness”, i.e. the user wants to retrieve only light or dark vehicles. Upon choosing
to filter based on color, the average vehicle colors are computed by using the center of the vehicle detections.
Since in the middle of the detection there is often a reflection of the sun, a “donut” shaped image mask prevents
taking into account an estimate of the vehicle that is over-saturated. By selecting different filters on the Hue,
Saturation and Intensity channels of the vehicle colors, the user can inspect vehicles that match a description of
a vehicle of interest.

3. DATA DESCRIPTION

In order to test and evaluate the methods we implemented the user interface, and loaded WAMI data obtained
with the CorvusEye R© 1500 system.7 The images were recorded with four RGB cameras with a resolution of
6600 × 4400 pixels each, running at 2 frames per second. After stitching the images into one large frame, the
total resolution is 13 200×8800 pixels, which equals 116 Megapixels. An example of the camera setup is depicted
in Figure 4 from which it is clear that the field-of-view of the cameras slightly overlap.

An example of a stitched image is depicted in Figure 5, which shows the overview of the complete stitched
image (Figure 5a), as well as a close-up indicating the amount of detail captured by the cameras (Figure 5b). The
ground resolution varies between 0.18 meter/pixels to 0.31 meter/pixel, which directly relates to the resolution of
the warped image, which is 44 000× 66 000 pixels, or 2.4 Gigapixels, although because of the methods described
in Section 2.1, we can greatly reduce the overhead both in storage size and in loading time.

In total 3156 images are used, which show the downtown of Rochester, NY, USA, and were captured from an
airplane circumnavigating the city with a timespan of approximately 6.5 minutes, covering more than 20 km2.

4. EXPERIMENTS AND RESULTS

4.1 Image Storage

To evaluate the performance of the image storage process described in Section 2.1, we measure the amount of
data loaded and time to load a requested image when we load random parts of the image at random scales.
Notice that this provides on average poorer results than in the GUI, in which we fix the image scales to those
that are known to be available. We compare the measurements with the traditional approach in which we load
the complete image and zoom and crop to the requested part.

Averaged over 1000 different requested image regions and scales, we see that our methods loads 3.76 times
too many pixels compared to 4276 too many pixels for the naive approach. This is also reflected by the loading



(a) Stitched frame of four combined cameras. (b) A closeup of image showing the detail.

Figure 5: An example of the overview and detail captured by the cameras.

time, which takes 0.295 s for the tile-based method versus 4.787 s for the traditional approach. In Figure 6a the
mean overhead of loaded pixels is shown for the tile-based method as well as the worst-case scenario. All 1000
experiments are shown, sorted by their relative performance. In Figure 6b the loading times are shown for the
1000 requests.

4.2 Vehicle Tracking

After tracking, all tracks are linearly interpolated at the following time instances: 1) at which no detections were
added to the tracks and 2) that lie between time instances containing associated detections. After filtering for
incorrect tracks (due to detections of non-vehicles or detections for which no matches were found) this set contains
46 605 tracks and 4 015 764 detections, resulting in a mean track length of 86.1 frames (42 s). A histogram of
the track duration is shown in Figure 7. The resulting tracks where used to evaluate the turn-based anomaly
detection, as well as the other functions of the GUI.

10
0

10
2

10
4

10
6

D
a
ta

 l
o

a
d

e
d

Data load overhead

Tile based

Worst case

Naive

(a) Percentage of pixels loaded for any request.

10
-2

10
0

10
2

T
im

e
 (

s)

Image loading time

Tile based

Naive

(b) Time required to load sub-frames

Figure 6: Results of the image storage process showing the overhead in data loaded and in loading time.

0 50 100 150 200 250 300 350 400

Time (s)

0

5000

10000

15000

C
o

u
n

t

Track duration

Figure 7: A histogram of the track duration shows that many vehicles can be tracked for more than 10 s.



Figure 8: An example of the GUI in which the user selects tracks that crossed a bridge.

4.3 GUI

All the aforementioned functionalities come together in the form of a GUI. It allows users to inspect the WAMI
images, as well as external maps, landmarks and the results of the tracking of vehicles. Using different types
of queries, the GUI allows to focus on a subset of vehicles that perform certain maneuvers, have a particular
color, or were ever at a specified location. In the current paper we present two examples in which most of the
functionality is demonstrated.

In Figure 8 a user used the line query to inspect vehicles that crossed a bridge. On the left the vehicle tracks
are shown on an externally loaded map, and on the right one instance is shown in the original camera image. In
the bottom all vehicles are shown that crossed the bridge within the available dataset, sorted by lightness.

In Figure 9 a location based query is done for a particular brand gas station and additional information is
provided that the user is interested in vehicles that were within 100 m of a gas station matching with the query.
On the left a top-down image is shown based on the stitched WAMI image, and on the right an additional query
is added indicating that the user wants to see vehicles of a specific color. Finally using the tick marks in the
center, the user has specified to only show vehicles that made a turn.

5. CONCLUSION

In this article we present methods and a GUI for inspecting WAMI data, as well as large numbers of (vehicular)
tracks for surveillance purposes. We presented a tile-based image storage method, which allows for fast image
retrieval from an otherwise large image source. Experiments show that this leads to a reduction of data load of
two orders of magnitude and on average a factor of twelve reduction in loading time.

Our presented vehicle tracking method processes 6.5 minutes of video of more than 20 km2 at 2 fps resulting
in over 46 thousands of tracks with a mean track duration of 42 seconds. It is shown that with these tracking
results additional information can be extracted such as the speed and turning behavior of each track segment,
providing valuable insight for an operator.



Figure 9: A screenshot of the GUI in which the user select white vehicles that turned left or right near a specific
gas station.

Finally a GUI was shown, which can be utilized by a user to quickly navigate through all data, to more
accurately inspect the target of interest. Tile-based image storage allows for quick navigation through the
imagery, third party location information aids in guiding the operator’s search, and queries on the tracks allow
to filter out noise from the vehicles of interest.

ACKNOWLEDGMENTS

The authors would like to thank Harris Corporation for the availability of the CorvusEye R© 1500 imagery.7 This
research is done within the Unmanned Systems program (V1340) in which TNO researches the use of different
unmanned systems.

REFERENCES

[1] van Eekeren, A. W. M., Dijk, J., and Burghouts, G., “Detection and tracking of humans from an airborne
platform,” Proc. SPIE 9249 (2014).

[2] van Brandenburg, R., Niamut, O., Prins, M., and Stokking, H., “Spatial segmentation for immersive media
delivery,” Proc. ICIN 15, 151–156 (2011).

[3] van Eekeren, A. W. M., van Huis, J. R., Eendebak, P. T., and Baan, J., “Vehicle tracking in wide area
motion imagery from an airborne platform,” Proc. SPIE 9648 (2015).

[4] Viola, P. and Jones, M., “Rapid object detection using a boosted cascade of simple features,” Proc. CVPR
1, I–511 (2001).

[5] Furukawa, Y. and Ponce, J., “Accurate, dense, and robust multiview stereopsis,” IEEE Trans. Pattern Anal.
Mach. Intell. 32(8), 1362–1376 (2010).

[6] Lewis, J. P., “Fast template matching,” in [Vision interface ], 95(120123), 15–19 (1995).

[7] CorvusEye R© 1500 imagery courtesy of Harris Corporation (2014).


	INTRODUCTION
	METHODS
	Storage of imagery
	Vehicle tracking
	Track analysis and maneuver based queries
	Location based queries
	Color based queries

	DATA DESCRIPTION
	EXPERIMENTS AND RESULTS
	Image Storage
	Vehicle Tracking
	GUI

	CONCLUSION

