
Model-Based Architecture Optimization for
Self-adaptive Networked Signal Processing Systems

C.J. van Leeuwen∗, J.M. de Gier†, J.A. Oliveira de Filho‡ and Z. Papp§
TNO Technical Sciences

The Hague, The Netherlands
Email: coen.vanleeuwen@tno.nl∗, jan.degier@tno.nl†, julio.oliveiradefilho@tno.nl‡ and zoltan.papp@tno.nl§

Abstract—This short paper introduces a closed-loop design
optimization method for self-organizing and self-optimizing net-
worked systems with a focus on signal processing and control.
The design process starts with creating graph-based model of
the system using a dedicated modeling language.The design
is exported and converted to executable code in order to
obtain the properties of the runtime behavior of the system
using a simulation environment. The embedding optimization
loop iteratively invokes the evaluation and searches for optimal
architectures and parameterization in the user defined design
space. A distinguishing feature of the tool is that it allows for
runtime changes in the models, i.e. it is capable of evaluating
runtime reconfigurable architectures. The design space is split
into two disjunct sub-spaces: one of them defines the runtime
reconfigurability (the self-* capabilities), the other defines the
region of design time optimization. The tool is demonstrated via
a real-time monitoring application.

I. INTRODUCTION

Self-organizing and self-adaptive networked systems have
to be realized in order to cope with changing operational con-
ditions, changing user needs and other unforeseen influences.
System architects and designers face difficult challenges when
designing such runtime reconfigurable networked systems. In
order to help designers to make informed decisions, a toolchain
was developed in which a designer can model the architecture
of the system, define its components’ behavior, evaluate the
system level performance, and optimize the design.

The proposed method uses model-based engineering [1]
as the methodology to build and evaluate the system. The
designer uses a Domain Specific Modeling Language (DSML)
with primitives such as Tasks, Nodes and Connections to
describe the system at hand. When the modeling is completed
(on a certain level of fidelity), the designer can generate
code compatible with the evaluation environment. Finally the
designer defines the design space of the model which he wishes
to optimize using the optimization tool. The approach will be
discussed in more detail section II.

In this paper the methods are introduced and explained
using an example. In the example a network of four sensor
nodes monitor the temperature in a cargo container in order
to determine the cargo’s health state. The four nodes sample
the environment with a certain frequency, process the samples
for estimating the local state (temperature), and communicate
with each other to refine the state estimation via state fusion.
The example will be discussed in section III.

This short paper is accompanied by a video, which can be
found via the following URL: http://youtu.be/ZP6q9J5wX4k.

II. APPROACH

A. Modeling Language

A DSML was developed for the toolchain providing both
textual and visual representation1. Conceptually the modeling
language is similar to system description languages such as
UML/MARTE or SysML, but less extensive, yet having some
unique features specifically for dynamic architectures: the
modeling language has a set of special language primitives
to describe adaptivity, required to model systems that are self-
adaptive. The modeling concept and the underlying language
are described in detail in [2]. In this language the system is
defined using the following five different aspects:

• The functional model describes the tasks making up
the data flow of the system. Tasks are connected
through ports, and denote the concurrent activities in
the system.

• The behavioral model (similar to the UML state di-
agram), is used to determine the sequential behavior
of tasks, by indicating the time-consuming operational
segments.

• The physical model specifies the nodes and commu-
nication channels in the system, and how they are
connected.

• The node definition model specifies the nodes’ hard-
ware. This defines the available resources, albeit com-
putational, communication or energy-wise.

• The mapping model describes what tasks are running
on what nodes, and which communication devices are
used for which ports.

B. Design evaluation

In order to derive the system level KPIs (Key Performance
Indicators) of the design (e.g. expected lifetime, throughput, re-
sponse time, etc.) the code generator tool delivers Matlab code
compatible with the DynAA [2] simulation framework, which
was built specifically for runtime reconfigurable networked
systems. At the core of this framework is a discrete event
simulator (implemented in Java), on top of which is a model
layer implementing the language primitives that describes the
entities such as Tasks, Connections and Nodes. The generated
code builds on top of these existing components to build the
user-specified model.

1The graphical modeler tool was developed using the MetaEdit+ meta-
modeling tool (http://www.metacase.com/mep/).



The DynAA simulation tool is unique in that every com-
ponent may fail, disappear, reappear or be modified during
simulation, the system itself can transform itself structurally
(i.e. realizing self-* capabilities) and the simulator will cope
with the changes accordingly. In other simulation tools a
designer can trick the system into disabling or enabling certain
components based on a switch mechanism, but this can be-
come a unmanageable issue when dealing with self-organizing
systems in which architectural changes are fundamental and
frequent.

C. Optimization

The DynAA Design Space Exploration (DyDSE) tool is
the playground for design-time optimization, and puts the
simulation in an optimization loop. In each iteration, the user-
defined model is parameterized, built, simulated and evaluated
under user-defined scenarios. This process is iterated until the
optimization algorithm finishes, and the resulting model is
returned as the output. The DyDSE tool is written so that it
can use user specified (e.g. case specific) optimizers, including
those from the Matlab Optimization Toolbox such as the grid-
point, interior-point, sequential quadratic programming or a
genetic algorithm approach.

Besides the system model, the optimization tool also
requires a design space definition which provides the tool
with the exploration settings. This approach enables the fine
tuning of the runtime - design-time tradeoff, which is a critical
issue in real-time reconfigurable systems [3]. The design space
definition contains the following information:

• A list of the parameters to change in the model,
including their domain.

• The set of allowed structural transformations (e.g. task
reallocation, activation of hardware resources, task
instantiation, etc.).

• The loggers that will gather the KPIs from the simu-
lation.

• A reference to the constraint function and the objective
function. These are custom user-written functions that
operate on the information from the loggers in order
to determine what the value of a potential solution is.

• The optimization algorithm to use, and its settings.

III. CARGO MONITORING EXAMPLE

A small real-life example was worked out to demonstrate
the toolchain. In the functional model there are two types of
tasks: sampling tasks (four instances) and signal processing
tasks (amount will be determined by the optimizer). The
outputs of the sampling tasks are connected to the input of
the processing task, but what sampling tasks are connected
to what processing tasks is to be decided by the optimizer.
There are three possible structures: 1-to-1, all-to-all or 2-to-1
(any arbitrary connection matrix could be used, but the search
space was limited to these options for pragmatic reasons).
All processing tasks communicate with each other, so that
information is always shared to obtain a state estimation based
on all sensors.

TABLE I. MODEL PARAMETERS AND THEIR POSSIBLE VALUES

Parameter Values
Communication period 12 16 20 24

No. of processing tasks 1 2 3 4

Sampling to Processing 1→ 1 ∗ → ∗ 2→ 1

Processing to Node 1→ 1 ∗ → 1 2→ 1

As defined in the behavioral model, the sampling task
writes the sensor information to its output port, and then
delays for 10 seconds (sampling time). The processing task
will read data from the sampling task, and from other potential
processing tasks and processes the input accordingly. The
processing time is dependent on the amount of data read,
and after calculation the result is communicated to the other
processing tasks. The delay before repeating (communication
period) is to be decided by the optimizer.

In the physical and mapping model there are four sensor
nodes, communicating wirelessly with every other. There is
one sampling task mapped to each sensor node, and they all
use the same communication device. The allocation of the
processing tasks to the sensor nodes is determined by the
optimizer using different structural combinations (1-to-1, all-
to-1 or 2-to-1). All model parameters are repeated in Table I.

The model performance, which is calculated by the ob-
jective function of the optimization loop, is a balance of
the uncertainty of the state estimation and the total amount
of energy used. The uncertainty is obtained using statistical
models of the noise of the sensors, combined with the time
since the last update, the combining of multiple measurements
and the extrapolation distance. The total amount of power used
is obtained from the simulation results.

After performing an exhaustive grid search over the dif-
ferent parameter values, the optimizer returns that the optimal
solution will be using a communication period of 12 seconds,
using two processing tasks. The processing tasks are mapped
to two different nodes, and two sampling tasks communicate
to one processing task.

IV. CONCLUSION

In this paper we introduced a design optimization toolchain
for self-organizing networked signal processing systems. It
features a graphical interface for modeling the system, a
simulation environment for obtaining KPIs, and uses an op-
timization framework to optimize the design architecture and
parameters. We have shown that our optimization framework
is capable of searching through different designs and delivers
non-trivial answers, which outperforms any of the alternatives.

REFERENCES

[1] T. Saxena, A. Dubey, D. Balasubramanian, and G. Karsai, “Enabling
self-management by using model-based design space exploration,” in En-
gineering of Autonomic and Autonomous Systems (EASe), 2010 Seventh
IEEE International Conference and Workshops on. IEEE, 2010, pp.
137–144.

[2] J. Oliveira de Filho, Z. Papp, R. Djapic, and J. Oostveen, “Model-based
Design of Self-adapting Networked Signal Processing Systems,” 2013
IEEE 7th International Conference on Self-Adaptive and Self-Organizing
Systems, pp. 41–50, Sep. 2013.

[3] E. Kang, E. Jackson, and W. Schulte, “An approach for effective
design space exploration,” Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems, pp. 33–54, 2011.


