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ABSTRACT

Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as
fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for
anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA’s Mind’s
Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances
is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features
extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the
feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but
choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier
Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying
assumption is that the local maximum distance between labeled examples is a good indicator of the variation in
that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our
method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based
Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of
the anomaly detection.

Keywords: Anomaly Detection, One-class Classification, Outlier Detection, Pattern Recognition, Video Anal-
ysis

1. INTRODUCTION

As part of DARPA’s Mind’s Eye program we developed a system for detecting anomalous behavior in videos
containing a variety of human activities. In such tasks one typically only has training data available for the
case with normal, insuspicious behavior; representative footage of abnormal behavior is too rare or even entirely
unavailable.

The system’s input is a 48-dimensional feature vector of confidences of detected verbs. A word cloud of
these verbs is shown in Figure 1. By setting a threshold on the distance of the queried state to known ‘normal’
instances, an outlier is defined: when the distance is smaller than the threshold it is similar to the observed
normal behavior, otherwise it is too deviant and considered an anomaly.

Choosing a threshold in this high-dimensional space is difficult. Even though the idea of having a fixed
distance threshold is intuitive for human operators, a single threshold implies a homogeneous spread of known
instances. In this paper we therefore explore adaptive thresholds to find anomalous behavior in a more robust
manner with a more meaningful parameter. In section 1 we will state the problem and introduce the main idea
of our new method: the Adaptive Outlier Detection (AOD) algorithm.

We shall then discuss existing methods in section 2, followed by a more detailed description of the new
algorithm in section 3. In section 4 we will first show results of a synthetic experiment, after which we evaluate
behavior detected from video data in order to find anomalous actions. Finally in section 5 we will discuss what
we can learn from this, and consider future work.
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Figure 1. A word cloud of the used verbs in the DARPA Mind’s eye program

1.1 Task Description

In our application we have a video data set of various settings where humans exhibit a wide range of behaviors.
In total, 48 actions are distinguished that are of interest. To give an idea, some verbs that are included are:
approach, bury, catch, drop, exchange, walk (for a complete list see Figure 1). Dedicated classifiers attempt to
recognize these actions in certain parts of a scene at every moment.1–3 The results of these classifiers on all verbs
are represented as verb probabilities, and form the input for the anomaly detection system.

1.2 Types of anomaly detection tasks

There are basically three types of anomaly recognition tasks4 which are shown in Table 1:

The first type is analogous to the unsupervised clustering task where the model has no prior knowledge of
the data. The system simply receives a data set as input and the goal is to find instances that are in some way
anomalous. This type of task is typically done on static data where the main interest is to find interesting items
amongst the bulk of “normal” data.

The second type of anomaly detection is analogous to supervised classification. The system is initially trained
using both “normal” and “abnormal” instances, and it simply learns to classify new instances accordingly. This
approach is very useful when the type of anomalies is known and abundant before they occur. They will however
not be able to handle completely new types of anomalies that are not present in the training phase.

Finally, the third approach of anomaly detection is analogous to a semi-supervised classification task. In this
task the system is initially offered only data labeled as “normal” in a training phase. The system will need to
create a model of this normality and will determine some boundaries within which data is assumed to be normal.
After that unclassified instances need to be labeled “normal” or “abnormal” appropriately. The assumption
made for this type of task is that the full spectrum of “normal” data is observed before the testing starts.

This third type of anomaly detection is most relevant to the rest of this paper, as it is most like the task we
are given in the video behavior analysis. In any type of the anomaly detection task we would like to derive some
weight or confidence level that indicates to which extent we can rely on the given classification.

1.3 Evaluating anomaly detection methods

The performance of an anomaly detection system can be evaluated in different ways. All measures are based on
the number of true positives (TP : correct detection), true negatives (TN : correct silence), false positives (FP :
false alarms) and false negatives (FN : missed detection) when comparing returned output to a ground-truth
data set. In our case, we find it important not to miss a true anomaly, but also to make not too many false
alarms. Because in most practical cases the amount of anomalies greatly outnumber the number of normal
instances, we want to balance the types of errors. The Matthews correlation coefficient incorporates this desire:



Table 1. Of the three different types of anomalies, in this paper primarily semi-supervised anomaly detection will be
considered
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(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1)

Therefore it is our primary indication for evaluating the selected methods.

2. RELATED WORK

There are many different methods to determine anomalies from data sets,4 and we shall not list them all in this
paper. However there are some methods that are can be clustered into a group of distance based classifiers that
base their output on a distances in the feature space. The method that we propose in this article also belongs
to this group, since we will use local neighborhood distances to determine a point’s anomaly likelihood without
assuming an overall distribution model.5

Other methods that somehow fit a mixture of parametric models (such as Parzen density estimators6,7 or
expectation maximization for determining outlier probabilities8 make fundamentally different assumptions on
the occurrence of outliers. Where they assume outliers can be discriminated in areas that are sparsely covered
by the normal instances, distance based methods do the opposite. Distance based methods are based on the
assumption that sparsely covered subspaces containing normal instances support a larger area in which unseen
normal instances can occur. That is why such methods are not included in our comparison.

The Local Outlier Factor (LOF)9 is a measure of how much of an outlier a query point is compared to a
data set. In order to compute this value, a measure called the reachability density for every point needs to be
defined, which is the local density of k nearest neighbors up to a specific bound. The LOF is then determined
by comparing the reachability density from one point to that of its k nearest neighbors. The authors suggest
using a relatively large number of comparison points (large k) in order to get reliable results.

A similar measure is the Local distance-based outlier factor (LDOF).10 This metric is much more straight-
forward in that it does not compare local density estimations, but instead compare the average distance to its k
nearest neighbors to the average inner distance of those k neighbors.

The Local Correlation Integral (LOCI)11 is another method that uses local distances. It compares the distri-
bution of pair-wise distances in different ranges around a query point. This provides a local density estimation
around a point, as well as a local density deviation on which they base their anomaly classification.

3. METHODS

3.1 Fixed or dynamic threshold

In order to make a classification of a query point that is being compared to a reference set of labeled normal data,
we implemented a method on very similar assumptions to the nearest neighbor classification method. Nearest
neighbor search is not directly suitable for anomaly detection, since a mapping from nearest neighbor distances to
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Figure 2. A random data set with two clusters of different densities. Two query points at similar distance to the clusters
may be classified differently

anomaly classification has yet to be made. The simplest method to do this is to threshold the Euclidean distance
measure with a fixed predetermined threshold. Choosing the threshold is not part of the responsibilities of the
algorithm, and may be difficult to choose in practice, since most real world data is unlikely to be distributed
homogeneously.5 A difference in local densities may suggest different thresholds, as is depicted in Figure 2.

Query point q1 is a potential outlier located near the lower left cluster, where q2 is placed near a less dense
cluster and therefore less likely to be a relevant outlier. For both points the distances to their respective nearest
neighbor are equal. In this case a fixed threshold cannot discriminate the two query points.

Choosing a different bilinear distance metric (such as any L-distance or in particular the Mahalanobis distance)
can weigh points in such a way that all dimensions contribute equally to the outcome. It does not help to solve
the difficulties with a fixed threshold entirely, as it linearly deforms the entire space and therefore is not able
cancel out the effect of clusters within the data set. If the feature space in Figure 2 would be transformed using
Mahalanobis distance, it would even suggest the opposite from our intuition since q2 would be considered the
outlier.

Methods using dynamic thresholds on distance metrics are able to correctly identify just these type of problems
where outliers in a data set depend on the distance to a nearby cluster, and the density of that cluster. For
example, a point at a medium distance to a relatively dense cluster is an outlier, whereas a point near a sparse
cluster exhibiting similar distances to its neighbors is not.12

3.2 Adaptive Outlier Detection

Our definition of the outlier distance is depicted in Figure 3, and is defined as follows:

Suppose we have some reference data set R and a query point q /∈ R. We then define Rkq ⊂ R, which consists
of the collection of the k nearest neighbors in R to q. Correspondingly we have Dkq which is the set of distances
of Rkq to q. Also we have Dmr which is the collection of the distances from all points r ∈ Rkq to their m nearest
neighbors in R (so Dmr is a collection of k ∗m distances). We can then define the adaptive outlier distance of q
as follows:
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Figure 3. A point q is compared to a reference set. Marked dots are the k nearest neighbors, with corresponding distances
(Dkq) as solid lines. Of one neighboring point r its m nearest neighbor distances (Dmr) are shown as dashed lines

AODq =
min (Dkq)

max (Dmr) + ε
(2)

anomaly =

{
true if AODq > α
false if AODq ≤ α

(3)

What this means is that the outlier distance of a point q is the ratio of the distance to its nearest neighbor
and the maximum distance of any neighbor’s mth next neighbor. This ratio of the first and second hop distance
from any query point q indicates wether the query point can be considered normal according to the variation
in R. The factor ε is a very small number to prevent division by zero. The value of the AOD ratio is hardly
influenced by this value given non-zero distances, and for max (Dmr) = 0 it ensures the outlier distance goes
toward infinity which is conform to our design.

For the simple case where k = 1 and m = 1 this means simply comparing the distance of the nearest neighbor
to the distance of that neighbor to its nearest neighbor. The method then determines whether a point is an
outlier if the value from equation 2 is larger than some threshold α, and if it is, it is considered an outlier. In
the implementation we leave the choice for m open, but in this article we from here on assume m = k.

When comparing the above approach to LDOF, there are some similarities, but there is one significant
difference. Once you assume that all given normal instances are labeled correctly, any point can support large
areas to be classified as ‘normal’ if a large spread occurs in the normal data. For our method we then hypothesize
to use the maximum distance ratio found in the k neighbors considered in contrast to the average distance. This
is based on the assumption that a query point only has to be explained as being ‘normal’ by one of its neighbors,
not by a weighted voting of k neighbors.

In this article we focus on the different distance comparing methods, not what metric we define our distances
in. Choosing a distance metric may have impact on the performance.13 In this article we will only look at
methods using a Euclidean distance metric (L2 norm) because of its intuitive notion of distance and ease of use.
We assume that when comparing the different approaches, a single distance metric will not favor one method
over another. This same assumption is made in other studies.11

3.3 Unsupervised AOD

The algorithm described so far classifies a query point based on a set of “normal” reference points in a semi-
supervised classification task. However, as described in 1.2 there is also the unsupervised task in which we simply
want to find out anomalous points in a set of data points. For this task we simply do an iterated call to the
regular AOD algorithm with every point q ∈ R and take R′ = R \ {q}. Then for each member q ∈ R we can
determine if that would be an outlier compared to R′.

Repeating this until there are no more points considered as outlier we obtain a new set R∗ ⊂ R of points that
are “normal”. For the unsupervised task we are now done, each point that is not in R∗ is considered anomalous.
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Figure 4. The ground-truth p.d.f. with all possible inliers in black and in white the outliers. The 40 uniformly drawn
samples are shown as dots.

For the supervised task however, we now have the possibility to determine if a query point q is anomalous when
comparing it to R∗: this is the unsupervised variant of the AOD algorithm.

3.4 Implementation

The proposed method for anomaly detection is based on k nearest neighbor (k-NN) classification, in the sense
that new instances are compared locally when doing classification. There exist multiple implementations of
k-nearest neighbor search, where the point data is organized as lists (linear search or as priority queue/binary
heap) or as trees (such as k-d trees, quad trees, octtrees). Depending on the data set, one data structure may
be preferred over the other. For example, with relative few high-dimensional points lists may be preferred over
trees that come with overhead in dividing subspaces. In other cases the partitioning performed by trees may
reduce k-nearest neighbor lookup significantly. For our test purposes we implemented a simple point list.

For this implementation there is not a significant training step (other than adding known instances to the data
set). As a consequence of this choice, we inherit some advantages directly: it is relatively simple to implement
and non-parametric (no a priori distribution is assumed). Disadvantages include the need to store all points
instead of a more memory efficient model, and that classification may be more computationally expensive than
methods that preprocess during training.

4. EXPERIMENTS

4.1 Synthetic experiments

To see how the various algorithms perform, their output is evaluated on some artificial data set. The ground
truth of this artificial data set is formed by two discrete bounded 2D areas of different size, where each element
has probability 1 to be normal, for all points outside the areas the probability is zero. The shape of this area is
shown in Figure 4. The input for the algorithm is a sampled set of n points drawn uniformly from each area:
labeled normal instances. The classified output of an algorithm can then be compared the actual inlier/outlier
ground truth. The bigger the overlap between output and ground truth p.d.f. is, the better that algorithm
performed.

In the experiment the value of α is determined on a training set of samples from the complete search space,
after which the MCC score is determined on an evaluation set of different random samples. In Table 2 the
combined results are shown for 20 experiments using different random seeds. As can be seen in this case the



NNOD distance map

(a) Nearest Neighbor Outlier Detection

AOD distance map, k=3

(b) Adaptive Outlier Detection

LDOF distance map, k=3

(c) Local Distance-based Outlier Factor

LOF distance map, k=3

(d) Local Outlier Factor

Figure 5. In black the areas are shown that would be considered normal based on the different anomaly detection algorithms
when applied to the samples from Figure 4

adaptive thresholding improve the anomaly detection perfomance. However in this case, the LDOF algorithm
outperforms the AOD algorithm marginally. In this experiment the used parameters were n = 6 and k = 3.

Table 2. MCC scores of the different algorithms on the synthetic task.

Algorithm MCC
NNOD 0.564
AOD 0.646
LDOF 0.693
LOF 0.578

4.2 Behavioral anomalies

In the second experiment we compare different anomaly detection methods on how well they are able to detect
anomalous behavior. The actual action recognition is not in the scope of this paper, instead we used a data set
which had already been classified.2 In this data set of over 3500 clips, each clip was given a set of 48 probabilities
corresponding to 48 verbs. We also had access to human annotated ground truth of the majority of these clips.

A series of experiments were performed on this data set. Each experiment is set up as follows:



1. One single verb is chosen which is selected as an anomalous activity.

2. A training set is created by randomly choosing 150 clips where there is no presence in the ground truth for
the selected verb.

3. Next, a test set is created by randomly choosing 475 clips where there is still no presence of the anomalous
verb, plus 10 clips where the anomalous verb is present.

4. An experiment is performed where each clip in the test set is compared to the training set, and a decision
is made wether the clip is anomalous or not.

The experiment is repeated using every verb as being anomalous. Every method then has to classify every
clip in the test set, and their scores are evaluated using the MCC score. We expect that in each experiment,
the 10 clips with the added verb are found to be anomalous. Based on the training set, these anomalous verbs
should have a lower probability.

It turned out that when faced a 48 dimensional problem, all of the methods performed very poorly, so that
none of them performed better than a random classifier. Therefore we decided to make the problem more
feasible be reducing the amount of dimensions to 10. This means that all predictions of the remaining 38 verbs
are ignored; they are not selected as being anomalous, nor are they used to predict anomalousness. Which verbs
are used and which ones are ignored was chosen randomly, and many different permutations of used verbs have
been tested.

For each selection of verbs, the experiment is repeated 10 times so that each verb is considered anomalous
once. The results are then averaged to get results for the current selected set of verbs. First we will analyse one
such specific set using an ROC curve, and then look at the influence of the choice of verbs by comparing the
highest MCC for any choice of parameters (k and α).
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Figure 6. The ROC curves of the behavioral anomaly experiment for different methods. The dashed line represents the
expected result of a weighted random classifier.

In Figure 6 an ROC curve with the x-axis is shown in log scale, showing where the AOD algorithm outperforms
the others. Because by definition of the experiment there are much more inliers then outliers, the false alarm rate
plays a significantly large role in calculating the MCC score. Because AOD actually outputs less false alarms



then other methods, its maximum MCC value is higher then LOF’s. This is because more new data is covered
by the normal field by AOD then by any other method. This means that it would be especially useful when
false alarms are generally expensive, or when there are simply very few anomalies in a large amount of normal
instances. The numerical values of the maximum MCC along the curves can be seen in the second column in
Table 3.

In Figure 6 the results are shown for an experiment in which one combination of 10 verbs are shown (particu-
larly they are: bury, catch, chase, exit, follow, give, open, pick up, push and put down). When choosing different
sets of verbs a different anomaly/normal segmentation is possible. In Figure 7 we show the MCC scores for
almost 3000 different random permutations of verb combinations. In this figure it can be seen that the choice of
the verbs is a crucial one, since the MCCs vary between 0.1 and 0.9, however we do see that AOD and LDOF
outperform LOF in most cases, and LOF in often outperforms the static Nearest Neighbor method.

In order to compare the different methods a range of parameter settings was used, and the best found
combination was selected to compare. Specifically for α values from 0.05 through 5 were used with increments
of 0.05, and for k the values 1, 2, 3, 5, 7, 11, 15 were used.

The particular choice of verbs that was chosen for the experiment in Figure 6 is the set of verbs where the
sum of the four MCCs is maximal. This is a set of verbs where every method performs relatively well, but for
every method there exists at least one set where it performs better. In Table 3 the MCC scores are shown for
this set where every method performs well, as well as the best individual MCC score we found amongst all verb
permutations.

Table 3. MCC scores of the different algorithms on the behavioral anomaly task for optimally chosen thresholds for each
method.

Algorithm Max sum MCC Max individual MCC
AOD 0.861 0.930 (k = 3)
LOF 0.747 0.794 (k = 1)
LDOF 0.861 0.921 (k = 3)
NNdist 0.156 0.373

5. CONCLUSION AND FUTURE WORK

In this paper we show that we can improve the performance of outlier detection using an adaptive threshold
on distance based. A new method for dynamic outlier detection is proposed, and compared to similar existing
solutions. Our new method does very little assumptions about the distribution of the data, except that points
that are similar are close together in some feature space.

In the experiments with the synthetic data set we saw an improvement with the adaptive methods, compared
to a fixed distance nearest neighbor algorithm. We did see however that the LDOF method scored marginally
better than the AOD method. In the synthetic experiments our assumptions about the maximum distance being
representative for the spread in the normal data did not lead to a better classification.

In the human behavioral experiments we have also shown that the adaptivity allows for a great gain in
performance. Both LDOF and AOD largely outperform the static method, the LOF algorithm also performed
better, but by a smaller margin. In this experiment the AOD algorithm outperformed the LDOF method, so
in this case the maximum distance between normal instance was a more representative measure for the normal
cluster density then the average distance.

It seems that the proposed method is an interesting new method for automatically finding outliers. Compared
to other methods it performs very well in both low and high dimensional data. The method appears specially
well in keeping low false alarm rates, making it an good choice for many tasks that involve few anomalies with
high information level. However there are some circumstances in which it performs better than LDOF and some
in which it does not. This has to do with the distribution of normal instances in the feature space, but in order
to make it clear what the exact properties of those distributions are, more research is needed.
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Figure 7. The maximum MCC score of the different methods are shown for different verb sets. The scores are sorted for
each method to compare the score distributions, not individual verb sets.

In the experiments of the human behavior anomalies we have shown that different sets of verbs perform better
than others. This is probably greatly influenced by the quality of the classification of the verb probabilities (the
input). However in this article, no extensive analysis is done on what combinations of verbs perform better,
and why this is the case. This would be a very interesting study for future research. It could be true that
the well-performing combinations are interesting to select for human anomaly detection in general, or the exact
opposite: they could in fact all be so close together, that they are separable in this context, but are completely
irrelevant for the ignored dimensions. Either finding would be of interest for the verb classification task.
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