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Abstract—A sensor network operating under changing opera-
tional conditions will have to adapt to its environment, topology
and system performance. In order to obtain this flexible behavior,
a reconfiguration framework is proposed for distributed signal
processing solutions. The considered example in this article
is distributed Kalman filtering, whereas the reconfiguration
framework is based on a first order logic reasoner to find
a feasible configuration in a dynamic execution context. In a
simulated scenario of a greenhouse temperature field estimation,
the proposed system can minimize the state estimation error,
while satisfying the systems constraints such as battery life, com-
munication bandwidth or reliability and timeliness of response.

I. INTRODUCTION

Self-organization and self-optimization are promising ap-
proaches to address the practical challenges of large-scale sen-
sor nd actuator (control) networks, such us easy deployment,
robustness, energy efficiency, etc. The terms self-organization
and self-optimization are used to denote a desired system
property (also collectively called as reconfiguration): the sys-
tem is not entirely specified a priori to its deployment but
some design decisions are postponed to the nominal operation
phase of the system. The main purpose of such a property is
to gain robustness of the system’s performance with respect
to operational changes (internal) as well as environmental
changes (external). For example, to enable the system to cope
with changing system configurations (i.e. adding and removing
subsystem components) without re-programming the existing
set-up (ease-of-deployment), to support a mobile group of
subsystems observing particular areas (dynamic sensor man-
agement), to adjust on environmental changes affecting the
communication resource (changing network capacities) and to
adapt to a variety of system goals during operation depending
on current needs and the monitored situation (multi-purpose).

The proposed framework is demonstrated by discussing
a greenhouse scenario, where the temperature distribution
within the greenhouse is to be estimated. The main reason
for selecting the (distributed) state estimation is because state
estimation is used in a wide variety of applications, such as
object tracking, traffic management and indoor climate control
to name a few. Yet, the proposed reconfiguration approach is
applicable for any system in which state estimation is the key
component for processing sensor measurements. Therefore,
in what follows a generalized framework is presented for
reconfigurable state estimating systems.

II. NOTATION AND PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-
negative real numbers, integer numbers and non-negative in-
teger numbers, respectively. For any C ⊂ R, let ZC := Z∩C.
The notation 0 is used to denote either zero, the null-vector or
the null-matrix of appropriate dimensions, while In denotes the
n×n identity matrix. The transpose, inverse and determinant
of a matrix A ∈ Rn×n are denoted as A>, A−1 and |A|,
respectively. Further, A

1
2 denotes the Cholesky decomposition

of a matrix An×n (if it exists). Given that a random vector
x ∈ Rn is Gaussian distributed, denoted as x ∼ G(µ,Σ), then
µ ∈ Rn and Σ ∈ Rn×n are the mean and covariance of x.

III. DISTRIBUTED STATE ESTIMATION

Since the article focuses on a reconfigurable state estimating
system, distributed state estimation is an important aspect
and will be addressed in this section by considering a linear
process model describing the state dynamics. In this context,
several distributed solutions of the Kalman filter have been
explored. See, for example, solutions proposed in [1]–[4] and
the references therein. This section aims to derive a general
framework, so that most of the currently available distributed
Kalman filtering solutions can be employed in the proposed re-
configuration scheme. To that extent, let us start with the state
estimation problem, after which the generalized framework is
introduced along with some illustrative estimation algorithms.

A. Problem formulation

Let us consider a linear process that is observed by a sensor
network with the following description:

The networked system consists of N sensor nodes, in which
a node i ∈ N is identified by a unique number within
N := Z[1,N]. The set Ni ⊆ N is defined as the collection of
neighboring nodes j ∈N that exchange data with node i.

The dynamical process measured by each node i ∈ N is
described with discrete-time process model, for some local
sampling time τi ∈ R>0 and some ki-th sample instant, i.e.,

x[ki] = Aτix[ki−1]+w[ki−1],
yi[ki] =Cix[ki]+ vi[ki].

The state and local measurement are denoted as x ∈ Rn

and yi ∈ Rmi , respectively, while process-noise w∈Rn and
measurement-noise vi∈Rmi follow the Gaussian distributions



w[ki] ∼ G(0,Qτi) and vi[ki] ∼ G(0,Vi), for some Qτi ∈ Rn×n

and Vi ∈ Rmi×mi . A method to compute the model parameters
Aτi and Qτi from a corresponding continuous-time process
model ẋ = Fx+w, yields

Aτi := eFτi and Qτi := Bτicov
(
w(t−τi)

)
B>τi

,

with Bτi :=
∫

τi

0
eFη dη .

The goal of the sensor network is to compute a local esti-
mate xi ∈Rn of the global state x in each node i. Since the pro-
cess model is linear and both noises are Gaussian distributed,
it is appropriate to assume that the random variable xi[k] is
Gaussian distributed as well, i.e., xi[ki] ∼ G(x̂i[ki],Pi[ki]) for
some mean x̂i[ki] ∈Rn and error-covariance Pi[ki] ∈Rn×n. To
that extent, each node i performs a local estimation algorithm
for computing xi based on its local measurement yi and on
the data shared by its neighboring nodes j ∈ Ni. Existing
methods on distributed Kalman filtering present an a priori
solution for computing xi and predefine what variables should
be exchanged, at what time and with which nodes, e.g. [1]–[4].
The goal is to reason about the design decisions made by these
existing solutions and to select the most appropriate one for the
current situation (depending on available communication and
computational resources and on the estimation performance).
This reasoning process will be addressed in a “management
layer” encapsulating the variants for local Kalman filtering,
which will be discussed in section IV-B.

Figure 1. A network of Kalmen filters supported by a management layer.

The reasoner, which is employed by the management
layer, should make an objective decision on which distributed
Kalman filter (DKF) solution is currently most appropriate.
This means that the alternatives for state estimation solutions
should be described within a generalized framework, other-
wise it is infeasible to compare the different alternatives in
an objective manner. Next, let us introduce such a general
framework for distributed state estimation.

B. A general framework for distributed Kalman filtering

The functional framework for computing the local estimate
xi is derived from existing DKF solutions. Typically, these
solutions propose that each node i performs a Kalman filter
(locally) based on its local measurement yi and thereby,
establishes an initial estimate xi ∼ G(x̂i,Pi), e.g., in [1]–[4]
and some overview articles in [5], [6]. After that, different
DKF solutions propose different types of variables exchanged
between two neighboring nodes i and j.
• Local measurements: node i receives y j for all j ∈ Ni,

which can be exploited for updating xi via a Kalman filter;

• Local estimates: node i receives x j ∼G(x̂ j,Pj) for all j ∈
Ni, which can be exploited for updating xi via various
merging solutions, e.g.. consensus or state fusion.

Based on the currently available DKF methods a generalized
local estimation function is designed relying on the node’s
local measurement and on data received from neighboring
nodes. The corresponding framework consisting of so called
“functional primitives” is depicted in Figure 2. Each functional
primitive of this framework, i.e., the Kalman filtering function
fKF and the merging function fME, is characterized by a spe-
cific algorithm, though it is not necessary to specify them prior
to deployment. Instead, nodes are deployed with a number of
suitable implementations for each functional primitive, from
which a selection can be made during operation. Alternative
implementations related to computing local estimation results
xi ∼ G(x̂i,Pi) and xi+ ∼ G(x̂i+ ,Pi+) are presented, next.

Figure 2. Framework of functional primitives compose the generalized local
estimation function performed by each node i in the network.

Remark III.1 Note that the measurement model y j[ki] =
C jx[ki]+ v j[ki] should be available to node i before y j[ki] can
be exploited. Therefore, node j shares the local measurement
(y j,C j,Vj), while if node j shares local estimates, it exchanges
(x̂ j,Pj). This implies that the received data of Figure 2, yields
• Yi ⊂ Rm j × Rm j×n × Rm j×m j is the collection of
(y j,C j,Vj) received by node i from neighboring nodes
j ∈Ni. Note that Yi could be empty, for example, when
none of the nodes j ∈Ni shares its local measurement;

• Xi ⊂ Rn×Rn×n is the collection of (x̂ j,Pj) received by
node i from its neighboring nodes j ∈ Ni. Similar as to
Yi, also Xi can be an empty collection.

Let us continue with a detailed description of the Kalman
filtering function in Figure 2. This functional primitive com-
bines the local yi[ki] with the received measurements y j[ki] to
update its local estimate xi+ [ki−1] ∼ G(x̂i+ [ki−1],Pi+ [ki−1]).
Measurements are combined via the original Kalman filter or
by the alternative Information filter, which was proposed in
[1]. For this latter approach, measurements are rewritten into
their information form, for some z j ∈ Rn and Z j ∈ Rn×n, i.e.,

z j[ki] :=C>j V−1
j y j[ki] and Z j[ki] :=C>j V−1

j C j.

The Information filter has similar results as the original
Kalman filter but differs in computational demand.
Furthermore, the information filter is more convenient
when the amount of received measurements (y j,C j,Vj) ∈ Yi
varies at sample instants. Therefore, the Kalman filtering
function in the framework of Figure 2 employs the Information
filter. More precisely, fKF(·, ·, ·) is a function with three inputs



and two outputs according to the following characterization:

(x̂i[ki],Pi[ki]) := fKF(x̂i+ [ki−1],Pi+ [ki−1],Yi[ki])

Mi = AτiPi+ [ki−1]A>τi
+Qτi ,

Pi[ki] =
(

M−1
i +Zi[ki]+ ∑

(y j ,C j ,V j)∈Yi[ki]

Z j[ki]
)−1

,

x̂i[ki] = Pi[ki]
(
M−1

i Aτi x̂i+ [ki−1]+ zi[ki]+ ∑
(y j ,C j ,V j)∈Yi[ki]

z j[ki]
)
.

The merging function of Figure 2, introduced as
fME(·, ·, ·), merges the local estimate xi[ki] with the received
estimation variables x j ∼ (x̂ j,Pj) ∈ Xi[ki] into a new estimate
xi+ [ki] ∼ G(x̂i+ [ki],Pi+ [ki]). As an example, let us present
three approaches for merging the local estimation results xi
with received estimation results x j. Typically, the functional
primitive fME(·, ·, ·) is based on solutions for merging two
state estimation results xi and x j, yielding a recursive behavior
to merge all received estimation results. This means that the
merging function fME(·, ·, ·) performed by a node i has the
following description:

(x̂i+ [ki],Pi+ [ki]) := fME (x̂i[ki],Pi[ki],Xi[ki])

for each estimate (x̂ j[ki],Pj[ki]) ∈ X[ki], do
(x̂i[ki],Pi[ki]) = Ω(x̂i[ki],Pi[ki], x̂ j[ki],Pj[ki]) ,

end for
x̂i+ [ki] = x̂i[ki], Pi+ [ki] = Pi[ki].

Three alternatives for the inner-merging function Ω(·, ·, ·, ·) are
presented: one synchronization and two fusion approaches.

Recent DKF solutions, e.g., [2], [3], adopt a synchronization
approach to characterize fME(·, ·, ·). Such an approach stems
from the idea of synchronizing different internal clocks in
the network. Typically, synchronization is employed on the
estimated means, for some scalar weight ωi j ∈ R+, yielding
the following inner-merging function:

SY: (x̂i[ki],Pi[ki]) = Ω(x̂i[ki],Pi[ki], x̂ j[ki],Pj[ki])

x̂i[ki] = (1−ωi j)x̂i[ki]+ωi j x̂−1
j [ki]

)
,

Pi[ki] = Pi[ki].

Solutions for establishing the weights ωi j have been presented
in literature extensively, for example in [7], [8].

Merging solutions that take the combination of error-
covariances into account in addition to a combined estimated
mean are known as fusion solutions. An optimal fusion
method was presented in [9], though it requires that
correlation of the two prior estimates is available. In the
considered sensor networks one cannot impose such a
requirement, as it amounts to keeping track of shared data
across the entire network. Alternative fusion methods that can
cope with an unknown correlation are covariance intersection

(CI) and ellipsoidal intersection (EI), as proposed in [10] and
[11], respectively. In CI the fusion function is characterized
as a convex combination of the two prior estimates xi and x j,
for some scalar weight ωi j = tr(Pi)

(
tr(Pi)+ tr(Pj)

)−1, i.e.,

CI: (x̂i[ki],Pi[ki]) = Ω(x̂i[ki],Pi[ki], x̂ j[ki],Pj[ki])

Σi =
(
(1−ωi j)P−1

i [ki]+ωi jP−1
j [ki]

)−1
,

x̂i[ki] = Σi
(
(1−ωi j)P−1

i [ki]x̂i[ki]+ωi jP−1
j [ki]x̂−1

j [ki]
)
,

Pi[ki] = Σi.

The fusion method EI results in a “smaller” error-covariance
compared to CI, as the fusion result is not a convex
combination of prior estimate. Instead, EI finds an explicit
expression of the (unknown) correlation before merging
independent parts of xi and x j via algebraic fusion formulas.
To that extent, the (unknown) correlation is characterized by
a mutual covariance Γi j ∈ Rn×n and a mutual mean γi j ∈ Rn,
yielding the following inner function Ω(·, ·, ·, ·):

EI: (x̂i[ki],Pi[ki]) = Ω(x̂i[ki],Pi[ki], x̂ j[ki],Pj[ki])

Σi = (P−1
i [ki]+P−1

j [ki]−Γ
−1
i j )−1,

x̂i[ki] = Σi
(
P−1

i [ki]x̂i[ki]+P−1
j [ki]x̂−1

j [ki]−Γ
−1
i j γi j

)
,

Pi[ki] = Σi.

The mutual mean γi j and mutual covariance Γi j are found
by a singular value decomposition, which is denoted as
[S,D,S−1] = svd(Σ) for a positive definite Σ ∈ Rn×n, a
diagonal D ∈ Rn×n and a rotation matrix S ∈ Rn×n. As such,
let us introduce the matrices Di,D j,Si,S j ∈ Rn×n via the
singular value decompositions [Si,Di,S−1

i ] = svd(Pi[ki]) and

[S j,D j,S−1
j ] = svd(D

− 1
2

i S−1
i Pj[ki]SiD

− 1
2

i ). Then, an expression
of γi j and Γi j, for some ς ∈ R+ and {A}qr ∈ R denoting the
element of a matrix A on the q-th row and r-th column, yields

DΓi j = diag
(

max[1,{D j}11], · · · , max[1,{D j}nn]
)
,

Γi j = SiD
1
2
i S jDΓi j S

−1
j D

1
2
i S−1

i ,

γi j =
(
P−1

i +P−1
j −2Γ

−1 +2ς In
)−1×(

(P−1
j −Γ

−1 + ς In)x̂i +(P−1
i −Γ

−1 + ς In)x̂ j
)
.

A suitable value of ς follows: ς = 0 if |1−{D j}qq| > 10ε ,
for all q ∈ Z[1,n] and some ε ∈ R>0, while ς = ε otherwise.
The design parameter ε supports a numerically stable result.

This completes the description of the estimation function
depicted in Figure 2. Let us continue by explaining the
reconfiguration parameters that can be tuned for the considered
estimation function.

C. Tuning the functional primitives

The estimation function illustrated in Figure 2 consists
of two functional primitives. A node i combines received
measurements Yi via the Kalman filtering functional primitive



fKF, while received estimates Xi are merged in the functional
primitive fME via either SY (synchronization), CI (covariance
intersection) or EI (ellipsoidal intersection). There are several
parameters and structural changes that the management layer
can select, so that a suitable estimation function is constructed
in line with the current situation and available resources.
The different options for tuning a functional primitive are
addressed in this section.
• Sampling time τi: The sampling time of both primitives

fKF and fME can be tuned accordingly. Lowering the
sampling time τs implies that estimation accuracy, com-
putational demand and data exchange will be decreased,
i.e., saving communication and computational resources
and thereby saving energy.

• Shared data Yi and Xi: The selection of which variables
are shared, i.e., (yi,Ci,Vi) and/or (x̂i,Pi), can change
in time. Exchanging both improves estimation results
throughout the network but requires the most communica-
tion resources. Decreasing the usage of this resource can
be done by exchanging either the local measurement or
the local estimation result, which would yield a decrease
in the estimation accuracy. Additionally the frequency
of exchanging data can be influenced by changing the
communication frequency parameter υi.

• Implemented algorithm: There is only one implementa-
tion of the functional primitive fKF, which is the Infor-
mation filter. Yet, for the merging primitive fME one has
the option between four alternative implementations:

1) Wire: The inner-function Ω(·, ·, ·, ·) does not perform
any merging and is thus characterized by x̂i = x̂i and
Pi = Pi. The required computational power for this
alternative is minimal, though it would result in the
lowest estimation accuracy as well;

2) SY: The inner-function Ω(·, ·, ·, ·) is characterized by
the synchronization approach. The required compu-
tational power for this alternative is low, though it
would result in a poor estimation accuracy as well;

3) CI: The inner-function Ω(·, ·, ·, ·) is characterized
by the covariance intersection approach [10]. The
required computational power for this alternative is
moderate and would result in a moderate estimation
accuracy;

4) EI: The inner-function Ω(·, ·, ·, ·) is characterized
by the ellipsoidal intersection approach [11]. The
required computational power for this alternative is
high and would result in a high estimation accuracy;

The above options on changeable parameters and alternative
functional primitive are exploited by the management layer
for finding a match between the desired estimation quality
(accuracy) and the required resources.

IV. RECONFIGURATION FRAMEWORK

A. Architecture

The design challenge for any embedded system is to realize
the required functionalities (in this case state estimation) on a

Figure 3. Task and physical model

given hardware platform while satisfying a set of nonfunc-
tional requirements, such as response times, dependability,
power efficiency, etc. Model-based system design has been
proven to be a successful methodology for supporting the
system design process [12]. Model-based methodologies use
multiple models to capture the relevant properties of the de-
sign. These models can then be used for various purposes, such
as automatic code generation, design optimization, system
evolution, etc. [13] Crucial for the design process are the
interactions between the different models.

Two fundamental models of the design are the task model
(capturing the required functionalities of the employed signal
processing method) and the physical model (capturing the
hardware configuration of the implementation).

In Figure 3 the task model is represented as directed a graph:
the signal processing components (tasks) are represented by
the vertices of the graph, while their data exchange or prece-
dence relations (interactions) are represented by the edges.
Both the tasks as well as the interactions are characterized
by a set of properties, which typically reflect non-functional
requirements/properties. The tasks run on a connected set of
processors, represented by the physical model of the system.
The components in the physical model are the computing
nodes and the communication links.

It should be mentioned that in the signal processing (state
estimation) context the task graph is designed in two phases
(Figure 4): first the functional primitives are connected to form
the signal flow graph satisfying the functional requirements
and design constraints. Then the task network should be
created via clustering the elements of the network of functional
primitives to tasks considering computation, communication
and temporal requirements. This is not a linear process and
there is a strong dependency on the physical configuration.
Moreover, the search and optimization in the design space
make this an iterative process, which requires interactions
between hardware, software and signal processing architecture
designs.

The design process involves finding a particular mapping
that defines the assignment of a task Tq to a processor Pi, i.e.,
it determines which task runs on which node. Obviously the
memory and execution time requirements define constraints
when assigning the tasks to nodes. Further, data exchange be-
tween tasks makes the assignment problem more challenging
in distributed configurations, as a task assignment also defines
the use of communication links ci j - and the communication



Figure 4. Function and task network dependency

links have limited capacities. The design process results in
a sequence of decisions, which lead to a feasible system
design. Traditionally this design process is “off-line”, i.e., it
is completed before the implementation and deployment of
the system itself. The task model, the hardware configuration
and their characteristics are assumed to be known during this
design time and the design uncertainties are assumed to be
low.

These are overly optimistic assumptions for large-scale
sensor and actuator (control) networks: in many cases they are
deployed in “hostile” environments, where component failures
and dynamically changing configurations manifest themselves
as common operational events.

Expressed in the concepts of Figure 3, conceptually the
runtime reconfiguration is carried out via changing the task
graph (i.e. selecting a different signal processing scheme,
changing certain parameters of the functional primitives, etc.)
or re-mapping the task graph to the physical model (i.e.
changing the task assignment with the consequential change
in the communication topology).

As Figure 1 already indicates, our goal is to realize the
reconfiguration functionality for distributed state estimation in
a distributed manner to improve robustness and scalability. The
functional scheme of the reconfiguration is shown in Figure 5.
The primary functionality (in our case the state estimation) is
realized by the task network (via the invocation of associated
function primitives). The task network is built during initial-
ization time according to (off-line) design specification. The
reconfiguration runs parallel to the primary data stream: based
on the execution status (e.g. quality of the results generated,
the conditions of the hardware resources, the availability of the
communication links, etc.) the reconfiguration functionality
makes decisions about the configuration, its parameterization
and resource usage in order to satisfy the given requirements
and constraints. The reconfiguration is event driven, triggered
by changes in the execution context or the changing (user) re-
quirements and constraints. The reconfiguration may act on the
software side (e.g. selecting a different algorithm to implement
a particular functional primitive, changing task allocation, etc.)
or on the hardware side (e.g. adjusting transmission power,
suspending/awaking components, etc.).

The following characteristics of the proposed scheme should
be emphasized:
• Every time instant the function/task network is a snapshot

of the possible variants and mappings. The alternatives
may not be explicitly enumerated but can be the result of

Figure 5. The reconfiguration of the primary data path

a reasoning (problem solving) process.
• The scheme explicitly supports the separation of con-

cerns principle. The reconfiguration mechanism can be
designed and implemented relatively independently.

• The reconfiguration can be a resource demanding activity.
The scheme allows for tuning the “intelligence level”
of the reconfiguration depending on the performance of
the hardware configuration - virtually leaving the signal
processing aspect uninfluenced.

• There are low-overhead implementations available for
dynamic data-flow graph based signal processing (e.g.
[14]). Consequently the influence of the reconfiguration
on the signal processing performance can be kept low.
The interfacing between the data-flow graph and the
“management” side is usually implemented by a simple
API or message passing mechanism.

• The scheme is not specific to the distributed state esti-
mation problem, but other signal processing tasks (incl.
control) can be mapped into this architecture as well.

• The scheme is applicable to reconfigurations on “various
levels of granularity”: task, node and system levels, i.e.
the reconfiguration scales from fine grade distributed to
centralized. Needless to say distributed reconfiguration
may need cooperation among the reconfiguration func-
tionalities.

• From execution point of view the reconfiguration func-
tionalities should be included in the task graph (as one
or more cooperating tasks) and their resource demand
should be accounted for.

In the following the “management” side will be further
detailed. The representation of the configuration and the design
knowledge as well as the associated reasoning mechanisms
are the key elements on the management layer, thus in the
following these aspects will be emphasized.

B. Knowledge representation and reasoning

For the management layer as seen in Figure 1, which
reconfigures the core tasks’ functionality, a three-step strat-
egy is implemented. The first step in reconfiguration is the
monitoring step, in which the current status quo is observed,
in order to reflect the system’s own health/performance and
the state of the embedding environment. The second step is
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Figure 6. A schematic representation of the reasoning process

the reasoning step in which the observed characteristics are
analyzed, decided whether reconfiguration is even required,
and if it is required how to do so. The final step is the actuation
step which performs the decisions made in step two, thereby
completing the reconfiguration process.

The reasoning step is one of special interest, because it is
mainly here where the intelligence about the configuration is
represented in the system. Because the reasoning is only a
single step within the reconfiguration process and it always
operates with a predefined interface, it can be separated
from the rest of the system which makes it relatively easy
to implement any kind of reasoning module. A schematic
representation of the reasoner is shown in Figure 6.

In order to reconfigure the tasks’ core functionality, the
reconfigurator requires knowledge and a method for reasoning
about the various configurations. These two are intrinsically
connected since the form of the knowledge representation
depends on the method of reasoning. A case-based reasoner
would require knowledge in terms of different complete con-
figurations, whereas a utility reasoner would require a utility
function.

From the many different forms of reasoning and knowledge
representations, for this article a first order logic (FOL)
reasoner will be used. The corresponding knowledge repre-
sentation exists of a rule base existing of atoms representing
the configurable parameters, and constraints and conditions in
the form of logical compound statements to determine what
parameter choices are valid and which are not. The problem
statement of reconfiguration is now reduced to finding the
values for the atoms that satisfy the statements (effectively
a search). Now problem solving methods can be used for
solving FOL problems such backtracking and the Selective
Linear Definite (SLD) clause resolution which is proven to be
sound and complete [15]–[17].

FOL has been used to describe reconfiguration knowledge
in the past as well [18], [19]. An important reason for this
is that FOL reasoners have proven to be very expressive
in that they can describe both conditions and constraints,
perform boolean, numerical and symbolical operations and
therefore can reconfigure either by optimizing parameters or
starting/stopping components [20].

Using a FOL reasoner however, also means that a priori
to deploying the system, all constraints and conditions must
be determined because a rule base is required by the reasoner.
This requires some design time knowledge which can be expert
or empirical knowledge from experiments. For scenarios in

which multiple methods are applicable, a preferential order
must be determined. A completely bias-free self-exploring
reasoner is not implemented yet, but will be looked at in future.

V. CASE STUDY

In the case study, the proposed framework is applied to a
scenario in which the temperature distribution of a greenhouse
has to be monitored. In the scenario there are N nodes all
equipped with a temperature sensor, and a communication
interface for communicating wirelessly. Each node has to esti-
mate the temperature distribution. The implementation of the
experiment was in the form of an a discrete event simulation.

Using off-line measurements from a small scale greenhouse
setup, the system had access to real data, but still multiple
experiments were feasible, whilst still keeping the same input.
In the experiment, the six nodes that were simulated all
received measurements from their sensor, which in turn would
read the off-line measurement from the database.

The nodes were constrained in the bandwidth of the commu-
nication with other nodes, the amount of integer and floating
point operations per second (IOPS/FLOPS) and a limited
energy supply. In the ideal situation these constraints should
imply that the node should initially use the most “expensive”
method that would be computationally feasible, and under
decreasing battery capacity would decrease its effort, and in
the end use the “cheapest” method. At the same time the
system would always employ methods that satisfy the current
bandwidth conditions.

In the scenario implemented for this experiment, there are
six nodes and in one of the nodes the monitor finds the
battery level to drop below a certain threshold, such that
reconfiguration is desired. In the experimental setup the system
can change the following variables:

1) The algorithm used for the functional primitive fME (EI,
CI or SY)

2) The sampling rate at which to sample the sensor τi
3) The communication rate to send out information to

neighboring nodes υi
4) The sleep time of the radio, which controls the rate of

incoming messages from neighboring nodes υ ′i
In the initial configuration the system uses EI in the merging

functional primitive, samples its sensor once every 60 seconds
and broadcasts its state estimation results every 90 seconds.
Furthermore it fires the monitoring cycle every 150 seconds
and shuts down the radio for 5 seconds every other 30 seconds.
(Thereby using a pattern of 5 seconds sleep - 25 seconds
receiving.) Exchanged variables are automatically chosen, so
that if a node uses EI or CI it broadcasts (x̂i,Pi,ki, i) whereas
if it uses SY it broadcasts (x̂i,ki, i).

The reasoner implemented relies on a Prolog based FOL
interpreter 1. Choosing this implementation has a couple of
additional advantages. First and foremost, it has been used
for a long time by experts for encoding wide variety of
knowledge [21], and is very expressive, but also flexible in

1http://www.gnu.org/software/gnuprologjava/
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Set StateEstimationTask.ALGORITHM to CovarianceFusion
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Figure 7. The error trace of two nodes, when changing the fusion algorithm
in one of them
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Set OutGoingCommunicationTask.TRANSMISSIONFREQUENCY to 25%
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Figure 8. The error trace of two nodes, when changing the communicating
frequency in one of them

the type of rules that could be used to describe the knowledge
for the application. Secondly, Prolog is a well-known logical
programming language and therefore the framework can easily
be programmed using existing syntax and methods. Finally,
the Prolog implementation can use an external rule base,
separating the reasoning rule base from the implementation
itself. This results in having the reconfiguration behavior
defined separately and independently of the rest of the system.

The FOL rule base allows for a wide range of rule types.
The rule base created for the case study contained rules of
varying complexity, from very simple rules such as “The ideal
sampling frequency 0.2 hertz”, “The battery level is critical
if it is below a certain threshold” to more complex rules
such as “If the communication frequency is not low, and the
battery is running low suggest lowering the communication
frequency”. These exemplary statements would formally be
implemented in prolog as following:
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Set IncomingCommunicationTask.RECEIVESLEEPTIME to 50%
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Figure 9. The error trace of two nodes, when changing the radio sleep time
in one of them
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Set IncomingCommunicationTask.RECEIVESLEEPTIME to 50%
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Figure 10. The estimated remaining battery life when changing the radio
sleep time

Example prolog reconfiguration statements:
idealSamplingFrequency(0.2).

batteryCritical(State) :-
getBatteryLife(State, BatteryLife),
minBattery(Threshold), BatteryLife <
Threshold.

action(lowerCommunicationFrequency,
State, Reason) :- batteryLow(State),
\+ communicationFrequencyLow(State),
Reason = "The battery is low and the
communication frequency is high enough.".

The knowledge of the reconfiguration reasoner must be
coded a priori to the deployment of the system. The con-
straints and conditions of the rules, and the order in which
the different reconfiguration actions will be performed must
be determined. This does however not mean that the system
will reconfigure in any specific order, because the operating
conditions are unknown beforehand, and therefore the con-
straints and conditions determine the configuration at runtime.



The order of the rules therefore simply implies a preference
of certain configuration aspects, since in Prolog the first rule
that satisfies all conditions will fire.

In order to determine the ordering of the different type of
configurations and to create the related rule base, some expert
knowledge was used and some experiments were ran. In these
experiments the six nodes would do their work, and after two
hours of simulation time, the configuration of Node 3 would
change. For the results of these experiments, see Figures 7
through 9. In Figure 7 it can be seen that changing the fusion
method has a significant impact on the error covariance of the
state estimation in reconfigured node, but also in the node
that stays the same. The same holds for a change in the
outgoing communication frequency υi, of which the results
can be seen in Figure 8. The sleep time of the radio has the
relatively smallest impact, and seems the best option for the
first reconfiguration action. This means the node will receive
less messages from the other nodes and therefore the error
covariance will go up, but much less than with any of the other
options. Using this information, a rule base can be created.

When running the resulting system with the created rule
base in a simulated experiment, the reconfiguration reasoner
will deduce that a different sleep time is most desirable. In
Figure 10 it can be seen that the corresponding remaining
battery lifetime goes up significantly.

VI. CONCLUSIONS AND FUTURE WORK

Using the framework introduced enables reasoning about the
configuration of how to do state estimation. Using a library
of different state estimation methods and a way of reasoning
about when a method should be used, and with what kind
of parameters, we can improve the quality under changing
operating conditions.

The highly modular approach allows for easy implementa-
tion of a different reasoning engine, but also for portability
for different state estimation tasks.

In the example experiment it is shown that the framework
is capable of improving the battery lifetime of a sensor by run
time reconfiguring the state estimation method. In the example
this is done by modifying a parameter for the communication
strategy, and thereby having minimal impact on the state
estimation error.

In the current reasoner, an a priori determined set of
ordered rules exists in the rule base. In future research it
would be desirable to let go of these constraints and create a
unbiased context-free configuration space exploring reasoner.
An example of this could be a genetic algorithm adapted to
the reconfiguration scenario. An alternative way to go could
be implementing a learning algorithm.

Also this paper only looked at the state estimation problem,
whereas the framework allows for reconfiguring all kinds of
distributed reasoning tasks. In the direct future a reconfigura-
tion method for a distributed control task will be studied.

Finally in this article only (high fidelity) simulated exper-
iments are discussed. In the near future an implementation

of the framework on various embedded system and mobile
computing platforms will be carried out.
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